
Visual Analytics for Convolutional
Neural Network Robustness

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Stefan Sietzen, BSc
Matrikelnummer 0372194

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dr. Manuela Waldner
Mitwirkung: Dipl.-Ing. Mathias Lechner

Univ. Ass. Dr. Ramin Hasani

Wien, 11. Jänner 2022
Stefan Sietzen Manuela Waldner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Visual Analytics for Convolutional
Neural Network Robustness

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Stefan Sietzen, BSc
Registration Number 0372194

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dr. Manuela Waldner
Assistance: Dipl.-Ing. Mathias Lechner

Univ. Ass. Dr. Ramin Hasani

Vienna, 11th January, 2022
Stefan Sietzen Manuela Waldner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Stefan Sietzen, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11. Jänner 2022
Stefan Sietzen

v

Acknowledgements

I want to thank my supervisor Manuela Waldner for supporting me to freely explore my
ideas, for her great advice and guidance on this thesis, and for her patience.

I also want to thank my parents, my partner, and my friends for their support during
my studies.

The work presented in this thesis has been partially described in our paper “Interactive
Analysis of CNN Robustness”, published in Computer Graphics Forum (Proceedings of
Pacific Graphics 2021), 40(7), 2021. I want to thank my co-authors Mathias Lechner,
Judy Borowski, Ramin Hasani, and Manuela Waldner for their valuable contribution.

Furthermore, I want to thank Chris Olah and Nick Cammarata for their encouragement
and feedback on an early prototype of the presented application through the Distill.pub
Slack workspace.

vii

Kurzfassung

Convolutional Neural Networks (CNNs) sind ein Typ von Machine Learning Modellen,
der weit verbreitet ist bei Computer Vision Systemen. Trotz ihrer hohen Genauigkeit
ist die Robustheit von CNNs oft schwach. Ein für Bildklassifizierung trainiertes Modell
könnte beispielsweise ein Bild falsch klassifizieren nachdem das Bild leicht gedreht
wurde, bei leichter Unschärfe, oder bei veränderter Farbsättigung. Außerdem sind CNNs
anfällig gegen sogenannte “Adversarial Attacks”, Methoden, um analytisch minimale
Veränderungen am Bild zu generieren. Diese sind für den Menschen nicht wahrnehmbar,
können das Klassifizierungsmodell aber in die Irre führen. Es wurden verschiedene
Trainingsmethoden entwickelt, um die Robustheit von CNNs zu verbessern.

In dieser Arbeit untersuchen wir die Robustheit von CNNs mit zwei Ansätzen: Zuerst
visualisieren wir Unterschiede zwischen standard und robusten Trainingsmethoden. Dafür
verwenden wir Feature Visualization - eine Methode zur Visualisierung von Mustern, auf
die individuelle Neuronen eines CNNs ansprechen. Darauf aufbauend stellen wir eine
interaktive Visualisierungsanwendung vor, die die Nutzer eine 3d Szene manipulieren lässt,
während sie gleichzeitig die Vorhersagen sowie Aktivierungen aus den versteckten Ebenen
des CNNs beobachten können. Um standard und robust trainierte Modelle vergleichen
zu können, erlaubt die Anwendung die gleichzeitige Beobachtung von zwei Modellen.
Um die Nützlichkeit unserer Anwendung zu testen, führten wir fünf Case Studies mit
Machine Learning Experten durch. Im Zuge dieser Case Studies und unserer eigenen
Experimente konnten wir mehrere neue Erkenntnisse über robust trainierte Modelle
gewinnen, von denen wir drei quantitativ verifizieren konnten. Trotz der Möglichkeit, zwei
hochperformante CNNs in Echtzeit zu untersuchen, läuft unsere Anwendung clientseitig
in einem standard Webbrowser und kann als statische Website übertragen werden, ohne
einen performanten Backend-Server zu benötigen.

ix

Abstract

Convolutional neural networks (CNNs) are a type of machine learning model that is
widely used for computer vision tasks. Despite their high performance, the robustness of
CNNs is often weak. A model trained for image classification might misclassify an image
when it is slightly rotated, blurred, or after a change in color saturation. Moreover, CNNs
are vulnerable to so-called “adversarial attacks”, methods where analytically computed
perturbations are generated which fool the classifier despite being imperceptible by
humans. Various training methods have been designed to increase robustness in CNNs.

In this thesis, we investigate CNN robustness with two approaches: First, we visualize
differences between standard and robust training methods. For this, we use feature
visualization, a method to visualize the patterns which individual units of a CNN respond
to. Subsequently, we present an interactive visual analytics application which lets the
user manipulate a 3d scene while simultaneously observing a CNN’s prediction, as
well as intermediate neuron activations. To be able to compare standard and robustly
trained models, the application allows simultaneously observing two models. To test
the usefulness of our application, we conducted five case studies with machine learning
experts. During these case studies and our own experiments, several novel insights about
robustly trained models were made, three of which we verified quantitatively. Despite its
ability to probe two high performing CNNs in real-time, our tool fully runs client-side
in a standard web-browser and can be served as a static website, without requiring a
powerful backend server.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Machine Learning Background 7
2.1 Deep Learning Basics . 7
2.2 Adversarial Attacks . 11
2.3 Feature Visualization . 13

3 Related Work 19
3.1 Robustness in Deep Learning . 19
3.2 Visual Analytics in Deep Learning . 22

4 Preliminary Analysis 31
4.1 Initial Experiments . 32
4.2 Adversarial Transfer Learning . 36
4.3 Adversarial Transfer Learning with Inception V1 39
4.4 Training with Stylized ImageNet . 44
4.5 Conclusion of Initial Experiments . 44

5 Visual Analytics Design of Perturber 47
5.1 Overview . 49
5.2 Scene View . 51
5.3 Neuron Activation View . 63
5.4 Weight Editing . 69
5.5 Prediction View . 72

6 Implementation 75
6.1 Preliminary Experiments . 75
6.2 Perturber . 77

xiii

7 Results 83
7.1 Case Study . 83
7.2 Our Findings . 87
7.3 Quantitative Measurements for Case Studies 87
7.4 Performance Measurements . 91

8 Conclusion and Future Work 93
8.1 Summary . 93
8.2 Limitations and Future Work . 95

Bibliography 99

CHAPTER 1
Introduction

The undeniable success of deep learning (DL) in recent years has led to the adoption
of DL-based methods for many technical applications. One prime example is computer
vision (CV), where convolutional neural networks (CNNs) sometimes achieve super-human
accuracy [HZRS15]. These impressive results rely on an identical distribution of the
training- and a (held-out) test dataset, but often the generalization to perturbed data
is weak. Such perturbations can be simple color shifts, blur, additive noise, or image
transformations that are different from those used in training, but also more sophisticated
procedures such as so-called adversarial examples. These are images where the CNN’s
gradient of the class probabilities with respect to the input pixels is used to compute
minimal, often humanly-imperceptible perturbations that fool the network into making a
false prediction (Example shown in Figure 1.1).

This apparent misalignment between human and CNN vision has led researchers to
investigate and improve the robustness of machine learning (ML) models. Robustness
is of central importance for safety-critical use cases, such as medical applications or
self-driving cars [LHA+20]. A model that makes its predictions based on highly different
features compared to humans can not be trusted, therefore researchers have worked
on improving robustness against a variety of perturbations by incorporating perturbed
examples into the training procedure [GSS15]. These robustly trained models often behave
differently from their standard-trained counterparts when faced with other perturbations
than they have been trained on, as we show in Section 7.1.

To gain a better understanding of which features are learned by CNNs, researchers have
conducted experiments directly comparing human perception against CNN perception
[GRM+18], which showed a bias of standard-trained CNNs towards texture versus shape
and a lack of understanding of global structure. Others have shown that standard-
trained CNNs are highly sensitive to high frequency perturbations [YLS+19] or have
even indicated that CNNs mostly rely on surface statistical regularities [JB17].

1

1. Introduction

Figure 1.1: Illustration of an adversarial attack, taken from a gradientscience.org blogpost
[MS18]: The left image is correctly classified as “pig“. Adding the middle image, multiplied
by 0.005, results in the right image, which is incorrectly classified as “airliner“, while
having no human-visible difference to the original.

The exaggerated reliance on high-frequency features is strongly linked to the existence of
adversarial examples. While human vision is able to reason about global structure and
therefore can not be fooled by local high-frequency changes, standard CNN predictions are
brittle. They can be easily fooled by noise-like perturbations without making structural
changes to the input image.

Adversarial examples have sparked a large amount of research recently. A multitude of
attacks and defenses have been developed, overpowering each other in quick succession.
In 2019, Madry et al. [MMS+18] have theoretically shown that projected gradient
descent (PGD) is the strongest first-order attack. They conjectured that incorporating
PGD-generated adversarial examples into the training procedure provides provable
robustness against all first-order attacks of a certain perturbation magnitude. This is called
adversarial training. Interestingly, strong adversarial examples targeting adversarially
trained models exhibit a visible low-frequency structural change when compared to
the original image. This is a highly different behaviour than found when attacking
standard-trained models (example shown in Figure 1.2), and indicates that adversarial
training forces the model to shift its focus more towards low-frequency features compared
to standard training.

To visualize what features a CNN has learned, various feature visualization techniques
have been developed. These techniques differ in the way they generate and regularize
the respective visualization. Regularization techniques are used to visually approximate
natural images but often come with the cost of constraining the space of possible
visualizations and therefore hiding properties of the learned features.

Although feature visualization techniques represent a powerful lens into CNNs, they have
been mostly used to analyze standard trained models rather than investigating models
specifically optimized for some type of robustness. This leads us to our first hypothesis:

H1: Feature visualization can help to understand the difference of learned

2

Figure 1.2: Left: Original image, classified as “Malinois” by both standard and adversari-
ally trained models. Center: Image after 12 iterations of epsilon 100.0 L2-bounded PGD
attack on std.-trained model towards “African elephant”. Right: Image after same attack
on adversarially trained model.

features between standard and robust training.

Thus, our first contribution is to shed light onto the development of learned features during
standard training and during two robust training variants by using feature visualization
techniques. The training variants are adversarial training [MMS+18] and training on
the Stylized ImageNet (SIN) dataset [GRM+18]. We generate feature visualizations for
various checkpoints along the training process.

As the focus of this work is the comparative investigation of learned features between
differently trained models, we need to use visualizations that are able to uncover all sub-
tleties of learned features. We therefore use iterative activation maximization [EBCV09]
with simple transformation robustness [OMS17]. This avoids checkerboard artifacts and
provides some degree of frequency smoothing. Also, we visualize variants with additional
color- and frequency decorrelation, leading to more natural apperance.

Our second hypothesis is inspired by the various experiments on CNN robustness we
encountered in literature, which mostly focus on a single type of perturbation. These
experiments often take hours to set up according to domain experts who participated in
our case study.

H2: Interactively applying and combining a large palette of image perturba-
tions while simultaneously inspecting the responses of a single or multiple
CNNs can help to investigate the CNNs’ robustness.

To test this hypothesis, we first developed an interactive visual analytics application
called Perturber with above described capabilities. Perturber allows the manipulation
of a rendered 3d scene by camera transformations, texture and lighting changes, as
well as object morphing and background changes. The resulting image can be further
manipulated by various post-processing effects such as hue-, saturation- or brightness
shifts, frequency-based effects such as blurring, and even by generating adversarial

3

1. Introduction

Malinois 52%

Piggy Bank 35%

German
Shepherd 81%

Siberian Husky
25%

Standard Adv. trained Standard Adv. trained

Figure 1.3: Example of an interactive exploration in Perturber. Left: A rendered image of
a German Shepherd is perturbed by removing its texture. Center: After the texture has
been removed, the activations for two selected “dog-relevant” units can be seen to decrease
heaviliy in the standard model, while they decrease only slightly in the adversarially
trained model. “The dog-relevant” units are visually identified by their respective feature
visualizations. Right: For making the class prediction, the standard model seems to
predominantly rely on texture, and therefore classifies the smooth, untextured dog as a
piggy bank. The adversarially trained model apparently relies more on color and shape,
leading to the perturbed image being classified as a Siberian Husky. Figure taken from
[SLB+21].

attacks. The final image then serves as input to one or two CNNs whose activations
are visualized interactively, i.e. each input change immediately causes a synchronously
updated activation visualization at interactive framerates. The application visualizes
intermediate featuremap activations as heatmaps with negative activations depicted in
blue color and positive activations depicted in red color. Class probabilities are visualized
as a top-5 bar chart and by dataset examples from the respective class. Perturber and
its design reasoning are described in more detail in Chapter 5, the general concept is
depicted in Figure 1.3.

We then conducted case studies with five deep learning researchers as participants, two
of which were involved in the design process by incorporating their early feedback. The
case studies showed that Perturber helps users to quickly generate hypotheses about
model vulnerabilities and to qualitatively compare model behavior. Using quantitative
analyses, we could generalize participants’ insights to other CNN architectures and input
images than the ones used in Perturber, yielding new insights about the vulnerability of
adversarially trained models.

In summary, our main contributions are:

• We extensively investigated standard and robust training by generating feature
visualizations for finely-grained sequences of checkpoints, with a focus on comparison
between the training methods.

4

• We developed Perturber, a visual analytics application that allows the user to
interactively manipulate and perturb a 3d input scene, while observing intermediate
responses and predictions of CNNs classifiers. The application allows comparing
up to three models with identical architecture but different parameters.

• We conducted five expert case studies and evaluated the results. We collected
quantitative evidence for three hypotheses that were generated by using Perturber.

5

CHAPTER 2
Machine Learning Background

In this chapter, we will introduce the most important concepts in the ML context
necessary to read this thesis. We will start by looking at the basics of convolutional
neural networks, the ImageNet dataset, and transfer learning in Section 2.1. Then we
will look at some details of topics related to adversarial attacks in Section 2.2 before
dealing with feature visualization in Section 2.3

2.1 Deep Learning Basics

Deep learning is a special branch of machine learning dealing with neural networks with
multiple hidden layers. In contrast, early works on neural networks like the Perceptron
algorithm [Ros58] only contained an input and an output layer, the parameters being
coefficients of a linear hyperplane representing the decision boundary. Introducing hidden
layers in combination with non-linear activation functions increases the representative
power of a neural network. It can be shown that even a shallow neural network with one
hidden layer and a non-linear activation function can be a universal function approximator
[Cyb89]. Deep model architectures using multiple hidden layers help the hierarchical
learning of features, as the early layers can learn lower level features which the later
layers then can recombine to higher level features. The efficient training of so-called deep
neural networks (DNNs) has been enabled by the development of the backpropagation
algorithm [RHW85].

2.1.1 Convolutional Neural Networks

Convolutional neural networks are a type of neural network, which make heavy use of
weight sharing between spatial locations within so-called convolutional layers. In contrast,
vanilla neural networks make use of fully-connected layers, where each input neuron
is connected to each output neuron by a uniquely-weighted connection. Convolutional

7

2. Machine Learning Background

Figure 2.1: Schematic depiction of a CNN. The kernels of each layer (small squares) are
shared across all feature map locations. Figure created by Wikipedia user Aphex34, CC
BY-SA 4.0.

layers can take data with one, two, or three spatial dimensions as input, but are mostly
known for their use with images (two spatial dimensions). The number of weights of a
convolutional layer solely depends on the kernel size and the number of input and output
channels, not on the spatial size of the image. A schematic depiction of a CNN can
be seen in Figure 2.1. CNN layers learn a number of convolutional filters and output
the same number of channels, one per filter, in the form of so-called feature maps. A
standard CNN layer is represented by a kernel with h × w × i × o learned weights, where
h is the kernel height, w is the kernel width, i is the number of input channels and o
is the number of output channels, and an additional set of o bias values. Notably, a
convolutional layer acting on spatially two-dimensional data like images, learns a number
of three-dimensional filter kernels, consisting of the channel dimension in addition to the
two spatial dimensions.

In order to reduce the spatial dimensionality of the information flow in CNNs, down-
sampling layers are being used. Commonly used downsampling layers are max-pooling
and strided convolution. Max-pooling layers usually split the input image into mul-
tiple small patches and only output the maximum value from each patch. A typical
max-pooling configuration would be a kernel size of 3 with a stride of 2. This would
output an image half the width and height of the input image because of stride 2, with
each pixel containing the maximum value from a 3 × 3 window of the input image. A
similar configuration is typically used for strided convolutions. Here, the downsampling
is performed by convolving the input with a learnable 3 × 3 kernel, just like in normal
convolutional layers, but skipping every other spatial position resulting in an output
size reduced by two in each dimension. In order to avoid reducing the dimensionality
excessively, spatial downsampling layers are often accompanied by a doubling of the
channel dimension. This can be seen in Figure 2.2, where each for each max pooling
layer except for the last this applies. Note that doubling the number of channels while
halfing both spatial dimensions still amounts to an overall halfing of the dimensionality,
as the spatial halfing reduces dimensions by four.

The convolutional layers in a CNN are considered the feature extractors, which distill high

8

2.1. Deep Learning Basics

level semantic features into a lower dimensional space from a very high dimensional input.
In the example of the VGG 16 architecture (Figure 2.2), the input has 224 × 224 × 3
dimensions, whereas the extracted feature vector has 7 × 7 × 512 dimensions, a reduction
by a factor of 6. This is a comparatively weak reduction, caused by the fact that VGG
16 keeps the 7 × 7 spatial dimensions before flattening the features and feeding them
into the classification head, which consists of fully connected layers. In contrast, the
Inception V1 architecture incorporates a global average pooling layer that computes the
mean of each of the final 1024 feature maps before the fully-connected classifier. This
design choice decouples the spatial layout of the final features from the classifier and thus
resolves the issue of a fixed input resolution that is mandatory otherwise.

Figure 2.2: The VGG 16 [SZ15] architecture, a conceptually simple yet still widely
popular architecture for image classification. Image from Khandelwal[Kha20]

2.1.2 ImageNet and Variants

Deep learning models often contain a large number of parameters and therefore require a
large amount of training data. One of the most important datasets for image classification
is the ILSVRC 2012 dataset, which contains 1.3 million images labelled into 1000 different
categories (or “classes”) from ImageNet [DDS+09]. ILSVRC stands for “ImageNet Large
Scale Visual Recognition Challenge”, which is an annual competition where researchers
compete for the highest classification accuracy. In 2012 there was a breakthrough achieved
by the CNN AlexNet [KSH12], which is commonly attributed to having sparked the

9

2. Machine Learning Background

“deep learning revolution” in the following years. ImageNet is organized according to the
WordNet [Mil95] lexical database. The ILSVRC 2012 dataset has been used extensively
in recent years to benchmark new image classification models. Interestingly, it contains
a relatively large portion of dogs, 90 classes out of 1000 are different dog breeds. This
causes an abundance of feature detectors focusing on dog parts within a trained CNN.
Often, the term ImageNet gets used in place of the ILSVRC 2012 dataset, even though
strictly speaking the latter is a subset of the former. We will also use this nomenclature
here.

The popularity of ImageNet has led researchers to develop variants of the dataset which
are aimed at improving or testing the robustness of models. We will look at some of them
in Section 3.1. Stylized ImageNet is one particular variant, where the original ImageNet
images are replaced with versions generated by artistic style transfer [GEB16]. These
images thereby contain completely different texture information while preserving the
overall shape structure of the original image (as shown in Figure 2.3). Two of the three
models whose investigation we facilitate in Perturber have been trained on ImageNet
and Stylized ImageNet respectively. The widespread popularity and the significance of
ImageNet made it an obvious decision to visualize models trained on this dataset in our
visual analytics application.

Figure 2.3: Example from Stylized ImageNet: The image on the left is the original from
ImageNet, the other images are variants generated with artistic style transfer. Image
taken from [GRM+18].

2.1.3 Transfer Learning

Transfer learning [OBLS14] is a method that is primarily useful to increase generalization
capabilites in a few-data setting. A model with a large number of trainable parameters,
sometimes hundreds of millions, gets trained on a large, relatively general dataset like
ImageNet [DDS+09]. Thereby, it learns a useful feature representation of the input data
type, for example for natural images. Then, the model is trained on a smaller dataset of
interest, often with early layers not being updated (“frozen”). Freezing early layers keeps
them unchanged during subsequent training and therefore prevents the feature extractors
trained on the large dataset from overfitting the new, smaller dataset.

10

2.2. Adversarial Attacks

The first training procedure is called the pre-training step, the second one is called the
fine-tuning step. As the model has already learned to generate useful features from the
data during pre-training, it only needs to learn how to classify the new data from the
available features instead of having to learn the features themselves as well. This requires
significantly less data, and significantly fewer training iterations.

A typical transfer learning example might be similar to the following setting: The available
dataset contains 100 dog- and cat images each, with a resolution of 224 × 224. The
desired architecture is a high-performing CNN like VGG 16 from Figure 2.2. The deep
learning engineer might start with a VGG 16 [SZ15] pre-trained on ImageNet and replace
the final, 1000 dimensional output layer “fc8” with a 2 dimensional output layer for cat
and dog. They would then re-initialize the weights of the fully-connected “fc6” and “fc7”
layers, freeze all the convolutional layers, and then train on the available data. The
resulting model would learn to use the available features to discriminate cats from dogs
by only adapting the weights of the last three layers.

2.1.4 Robustness

Robustness in a broader sense describes the degree to which a model is resistant to
image perturbations that do not exist in the training data. These perturbations might be
simple ones like color changes (hue, saturation, etc.) and blur, or more complex ones like
unusual backgrounds and camera angles. In real-world scenarios, image perturbations
might arise, for instance, from faulty white-balance, a de-focused lens, lens flares, etc.
[HD18]. Human vision is often not affected by such perturbations. For instance, a human
still recognizes a purple cow as a cow, and a cow on a beach might be unusual but would
not confuse the human enough to make them think it is something else than a cow. A
special type of robustness is adversarial robustness. An adversarially robust model is less
vulnerable to adversarial attacks (Section 2.2).

ML practitioners typically try to improve the robustness of a model by data augmentation:
Cropping, horizontal mirroring, small rotations, additive noise, and slight color changes
are examples of augmentations that are often applied randomly to the training data
as part of the input pipeline [SLJ+15]. These augmentations preserve image semantics
while modifying pixel values and are therefore an easy way to increase and diversify the
amount of training data. Simple data augmentation only provides robustness against
the types of modifications performed by the augmenting operations. Researchers work
towards developing more sophisticated data augmentation strategies battling robustness
issues. For instance, we look at some recent examples of work dealing with more effective
data augmentation strategies in Section 3.1.

2.2 Adversarial Attacks

Generally speaking, adversarial attacks are techniques to imperceivably perturb the input
data of a predictive model in a way that causes a drastically different result than the

11

2. Machine Learning Background

original data. For image classification, adversarial attacks are algorithms to perturb
images so that they are perceived completely different to the original image by a model,
while being perceptually almost identical for humans. They impose a critical security
threat on deep learning models and thus have been investigated extensively in recent
years. Notably, researchers have been competing for the strongest and most general
attacks and defenses. Adversarial attacks can have two types of objectives. Either they
are untargeted, meaning their objective is to suppress the original top prediction, no
matter what the new prediction result will be, or they are targeted, aiming to fool the
model into predicting a specific class. In our application Perturber, we provide both
objectives as an option.

2.2.1 Attack methods

Most adversarial attack methods rely on first-order activation maximization. The gradient
of the prediction output with respect to the input image is computed, consisting of values
for each input image pixel. The gradient then gets subtracted (untargeted) or added
(targeted) to the input, thereby minimizing the original prediction or maximizing the
target prediction respectively. Adversarial attacks are usually bounded by a maximum
magnitude denoted epsilon (ϵ), which is measured under a specified Lp norm. This epsilon
value restricts how much the perturbed image can differ from the original image in pixel
space. The most popular norms in this context are the L2-norm, which restricts the
Euclidean distance between the original image and the perturbed image, the L∞-norm,
which restricts the difference independently per-pixel, and the L0-norm, which counts
the number of perturbed pixels.

Some notable attack methods are:

• Fast gradient sign method (FGSM) [GSS15]: As the name suggests, FGSM
is fast to compute, as it only requires a single iteration. The per-pixel sign of the
gradient is multiplied by the attack ϵ, resulting in a maximally perturbed image
under L∞-norm. Therefore this attack is primarily suited for the L∞-norm bounded
setting. This attack can also be applied iteratively to generate a stronger attack.

• Jacobian-based Saliency Map Attack (JSMA) [PMJ+16]: This attack it-
eratively perturbs the pixel with the strongest influence on the prediction. It is
therefore suitable as an L0-norm (number of changed pixels) attack.

• Projected gradient descent (PGD): This method has been shown by Madry
et al. [MMS+18] to be the strongest first-order attack method under a certain
perturbation budget. It works by iteratively computing the input gradient, adding
it to the current input and then projecting the total perturbation back to be of
length ϵ. The iterative nature of this method makes it computationally expensive.
PGD is highly effective under both L2- and L∞-norm.

12

2.3. Feature Visualization

2.2.2 Defenses

Defenses against adversarial examples can be broadly classified into three categories:

• Detection methods try to identify adversarial examples, without correcting the
prediction. The adversarial input can then be rejected, preventing harm caused by
the attack. Grosse et al. [GMP+17] were able to detect adversarial examples by
statistical properties of their activations. Xu et al. [XEQ18] proposed compressing
the input image through bit depth reduction or JPEG compression and measuring
the difference of the output scores to the original, a techique they call “Feature
Squeezing”. Many other detection methods have been developed.

• Gradient masking methods try to hide the model’s gradient from the attacker,
to prevent them from computing harmful perturbations. This is done by using
non-differentiable operations in the model, by using stochasticity during inference,
or by inducing vanishing/exploding gradients through very deep architectures.
Gradient masking methods have been shown to be circumventable by Athalye et al.
[ACW18].

• Adversarial training methods introduce adversarial examples into the training
procedure. There are methods that mix natural images and adversarial examples
as well as methods that exclusively train with adversarial examples. They are of
special interest to us as these methods are similar to the more general concept
of robust training with augmented data, like stylized images [GRM+18]. One
notable method in this category is PGD-based adversarial training. Madry et
al. [MMS+18] provide a proof that is the strongest attack method that relies on
gradient information, therefore, training on PGD-generated adversarial examples
produces a model that is robust to all first-order attacks.

2.3 Feature Visualization
Feature visualization is a technique that has been developed to provide an insight into
what features intermediate or output layers of a neural network have learned. The first
convolutional layer has three input channels and can thus be directly visualized simply
by showing the weight kernel as an RGB image, as shown in Figure 2.4. This is because
in 2d convolution, each feature’s kernel is 3 dimensional with a shape of kernel-width
× kernel-height × 3, just like an RGB image. Later layers require a more involved
visualization generation process.

A simple approach is activation maximization [EBCV09], which is closely related to
adversarial attacks. Activation maximization iteratively optimizes the input image by
gradient ascent. The optimization objective can be maximizing the activation of either the
desired neuron, a set of neurons like a single featuremap (“channel”), or all featuremaps
of a layer (“deep dream”) [OMS17], among others. Perturber makes use of feature
visualizations that maximize a single neuron’s activation.

13

2. Machine Learning Background

Figure 2.4: 96 filter kernels learned by the first convolutional layer of AlexNet. The
kernels have shape 11 × 11 × 3 [KSH12]. Image from [KSH12].

(a) Class “Golden
Retriever” visual-
ized by Nguyen et
al., generated us-
ing gradient blur-
ring regularization
[NYC15].

(b) Latent code im-
age reconstruction
by Mahendran and
Vedaldi with total
variation encour-
aging piece-wise
constant patches
[MV15].

(c) Class “Bram-
bling” visualized by
Nguyen et al. by
optimizing the la-
tent code of a deep
generative network
[NDY+16].

(d) Class “Red-
shank” visualized
by Nguyen et al.
by optimizing the
latent code of a
denoising autoen-
coder [NCB+17].

Figure 2.5: Four examples of regularization and parameterization techniques for feature
visualization.

Naive activation maximization usually leads to a noisy image, similar to an adversarial
perturbation vector and thus is not very useful to humans for understanding the concept
of the respective feature. With “feature”, we mean the set of patterns that cause strong
activation at the respective neuron, for instance “horizontal lines” or “left oriented dog
heads”. A wide range of regularization- and parameterization techniques have been
developed to mitigate this issue by enforcing properties of natural images. We discuss
some examples in the following.

2.3.1 Regularization and Parameterization

Regularization and parameterization techniques for feature visualization range from
explicit penalization of high frequencies by total variation [MV15] to feeding the input

14

2.3. Feature Visualization

Figure 2.6: Feature visualizations (top) and dataset examples (bottom) for Neuron 6
of Layer “mixed4e” from Inception V1. The feature visualizations have been generated
from different random initializations. Image consists of screenshots from [Ope].

image through a generative model. The former encourages images to consist of piece-
wise constant patches. The latter constrains the generated visualizations to the output
manifold of an auto-encoder or of a generative adversarial network (GAN) [GPAM+14]
that have previously been trained to generate natural images [NDY+16].

Another “extreme” form of regularization are dataset examples, which implicitly are
constrained to natural images from the training set. Dataset examples are generated
by recording the activation values of image patches from a dataset for the respective
neuron, for instance the ImageNet validation set. The image patches which activate the
neuron the most are then used for visualization purposes. They have been shown to be
particularly well suited for conveying concepts to humans [BZS+20], but fail at revealing
feature properties that deviate from those found in natural images. Figure 2.6 shows a
comparison of feature visualizations and dataset examples for the same neuron.

In our work we follow the techniques used in the Circuits project [CCG+20] and OpenAI
microscope [Ope]. They use transformation robustness as a regularizer and a color- and
frequency decorrelated image parameterization. Transformation robustness stochastically
applies small transformations to the input in each optimization step to find an image that
achieves the desired activation, even when slightly transformed. This helps smoothing
out checkerboard artifacts and high frequency noise [OMS17]. Color decorrelation is
achieved by computing the correlation among the RGB values over the whole dataset

15

2. Machine Learning Background

Figure 2.7: Feature visualizations of Inception V1 neurons with multiple regularization
and parameterization configurations, assembled from [OMS17].

Figure 2.8: Feature visualizations from various layers of Inception V1, starting on the left
with low-level feature detectors with small receptive fields from early layers, to high-level
detectors with large receptive fields from later layers on the right.

and multiplying the input image by the square root of the color correlation matrix before
feeding it into the CNN [OMS17]. Spatial decorrelation is done by parameterization of
the image in Fourier space and applying an inverse fast Fourier transform (iFFT) before
feeding the image to the model. This helps the gradient to be more evenly distributed
among spatial image frequencies, thus achieving a more natural appearance. Figure
2.7 shows a juxtaposition of feature visualizations generated with and without Fourier
parameterization and transformation robustness.

Examples of feature visualizations from various layers can be seen in Figure 2.8.

2.3.2 Polysemantic feature detectors

While feature visualization can generate an image that maximizes selected activations,
many neurons play multiple roles at once and respond strongly to a large variety of

16

2.3. Feature Visualization

patterns. This might be simply an invariance to transformations, like Neuron 55 from
Layer “mixed4b” of Inception V1, which responds to both left-arching and right-arching
curves (Figure 2.9b). There can also be more peculiar combinations like found in Layer
“mixed4e”, Neuron 55, which responds strongly to cats as well as to cars (Figure 2.9a).
Visualizing this polysemanticity can be achieved by optimizing multiple randomly initial-
ized input images concurrently and introducing a diversity term into the optimization
objective. A diversity term can be any term that encourages the individual feature
visualizations to be dissimilar. In Olah et al. 2017 [OMS17], this term is computed by
calculating the negative accumulated pairwise cosine similarity of the gram matrices of
each generated image. The gram matrix G is calculated by

Gi,j =
∑
x,y

l[x, y, i] × l[x, y, j] (2.1)

where x and y are the spatial locations of layer l and i, j are channels. The gram matrix
thus contains the pairwise dot products for each flattened featuremap of the respective
layer output. It has been used in style transfer [GEB16] to capture the “style” of an
image, independent of spatially defined content. Maximizing the style difference between
generated feature visualization by minimizing the negative cosine “style-similarity” leads
to a diversified batch of feature visualizations. Using the “style” as a comparison metric
here instead of a direct pixel loss (like pixel-wise L1) is very important, as illustrated by
the following example: An image with alternating black and white vertical lines of one
pixel width is completely dissimilar to the same image shifted by one pixel to the right,
under pixel-wise L1 distance, even though the styles of the two are virtually identical.
Besides diversified feature visualizations, dataset examples can also be an effective way
to look at polysemantic neurons. Polysemanticity adds an additional layer of visual
complexity, thus in our visual analytics application, we refrain from depicting multi-image
visualizations. This comes at the cost of slightly less meaningful visualizations for deeper
layers.

17

2. Machine Learning Background

(a) Four feature visualizations of Neuron 55 of Layer
“mixed4e” from Inception V1. The neuron responds to
cat- or fox-like animals, but also to cars (left).

(b) Four feature visualizations of Neuron 226 of Layer
“mixed4b” from Inception V1. The neuron responds both
to left- and right-arching curves.

Figure 2.9: Feature visualizations with “diversity” term.

18

CHAPTER 3
Related Work

In this chapter we describe the state-of-the-art of related research fields, namely robustness
and adversarial examples, as well as visual analytics in deep learning. We start by looking
at recent work in the field of robustness, then we show some examples of work about
visual analytics in deep learning, a rather new research direction with many possibilities
yet to be explored.

3.1 Robustness in Deep Learning
Recent work on robustness has revealed the highly brittle predictive performance of
convolutional neural networks. Interestingly, while a large portion of research has focused
on studying the existence of adversarial examples, it appears that investigating the more
general concept of robustness has not sparked as much interest among deep learning
researchers. Perturber has been designed to facilitate the visual investigation of CNN
behaviour both under adversarial attacks and under more general perturbations.

The strong interest of the deep learning community in adversarial examples has presumably
been sparked in 2014 by Szegedy et al. [SZS+14], who first demonstrated the existence of
adversarial examples. Apart from showing that CNNs can easily be fooled by humanly
imperceptible perturbations, they also demonstrated their generalizability to other
network architectures trained with the same dataset. This means that an adversarial
attack generated from network A also fools network B if they are both trained on the same
dataset. Subsequently, researchers have been trying to find defenses against adversarial
attacks. For example, defensive distillation [PMW+16] trains a second neural network
on the logits of an initial trained classifier as an additional barrier for an adversary. The
authors argue that the gradient of the class probabilities with respect to the input image
is much lower in the distilled network, making a gradient based attack significantly harder.
Feature squeezing [XEQ18] compares the activations of the original image to one that
has been degraded by bit-depth reduction or JPEG compression to detect adversarial

19

3. Related Work

Figure 3.1: (a) Shows an example from the backgrounds challenge (Image from the
authors’ blogpost [EIMX20]). (b) Shows a cat with an elephant texture, which was used
by Geirhos et al. in their experiments comparing human- and CNN sensitivity to texture
versus shape. Image from Gheiros et al. 2019 [GRM+18].

examples. Various researchers have also proposed training on adversarial examples to
improve robustness to adversarial attacks. Goodfellow et al. [GSS15] and Madry et
al. [MMS+18] present examples of such work. Most of these defenses have been proven
insecure [CW17]. To our knowledge, the first method confirmed by a third party to be
robust against adversarial attacks is PGD adversarial training [MMS+18]. Here, the
model is continuously trained on adversarial examples generated by PGD, which has
been theoretically shown to be the strongest gradient-based attack method.

Although “robustness” has almost become synonymous with “adversarial robustness”,
some researchers have called for a shift of robustness research to the more general
concept of robustness [GH19]. They argue that with adversarial examples being only the
most extreme cases where the brittleness of CNNs is exposed, a large amount of other
perturbations exist that equally fool CNNs while having negligible effect on human vision.
These perturbations can include camera defects, color shifts, or the addition of deterring
objects to the scene [RZT18]. Xiao et al. [XEIM20] have found that objects in front of
unusual backgrounds are often misclassified, and created the backgrounds challenge for
researchers to benchmark their models in this regard. Geirhos et al. [GRM+18] have
changed the texture of images while preserving the shape via style transfer and thereby
revealed a strong difference between human vision and CNNs regarding focus on texture
versus shape.

Others have investigated CNNs’ tendency to learn surface statistical properties [JB17], or
compared differently trained CNNs regarding their sensitivity to perturbations of varying
frequencies. They discovered that adversarially trained CNNs are highly sensitive to low
frequency perturbations (for example “fog”), whereas standard trained CNNs are more
sensitive in the high frequency spectrum [YLS+19].

To increase general robustness of CNNs, sophisticated data augmentation techniques

20

3.1. Robustness in Deep Learning

Figure 3.2: Examples of recent data augmentation strategies that go beyond simple
geometric or color transformations. Figure taken from Hendrycks et al. 2020 [HMC+20].

have been developed. CutOut [DT17] randomly masks part of the image input during
training and has been shown to increase robustness of CNNs. CutMix [YHO+19]
is an augmentation where patches of another training example are pasted into the
current image, and the labels are mixed proportionally to the area of the patches. The
authors demonstrate an increased model robustness against various input corruptions
when using this technique. MixUp [ZCDLP18] trains a neural network on convex
combinations of pairs of examples and their labels and thereby regularizes its behavior
towards more linearity in-between training examples. AugMix [HMC+20] uses a diverse
set of augmentations stochastically in combination with a Jensen-Shannon Divergence
consistency loss, while also mixing multiple augmented images and thereby achieves state-
of-the-art performance. AutoAugment [CZM+19] is a procedure to automatically search
for better data augmentation policies. The authors achieve state-of-the-art accuracy on
multiple datasets, including ImageNet, by using their technique. They also show that
their policy learned on ImageNet transfers well to other large-scale image datasets.

To benchmark ImageNet-trained models’ robustness, various ImageNet adaptations have
been designed. ImageNet-C [HD18] applies 75 common visual corruptions to standard
ImageNet. These corruptions include various types of noise, blur, color transformations
and spatial deformations as well as pixelation and lossy compression. Some examples
can be seen in Figure 3.3a. ImageNet-P [HD18] introduces fine-grained progressions of
10 visual corruptions. These include translation, affine and perspective transformations,
as well as additive effects like spatter dripping down the lens. These progressions can
be used to test the invariance of a model to small continuous changes, similar to what
might occur in a real video stream. ImageNet-A and ImageNet-O [HZB+21] contain
“natural adversarial examples”, which are natural images that are classified incorrectly
with high confidence. These can be for instance a squirrel image that gets confused with
a sea lion or a dragonfly image that gets mistaken for a manhole cover because of its
grid-like background, like seen in Figure 3.3b. While ImageNet-A contains images from
the ILSVRC2012 classes, ImageNet-O contains out-of-distribution images whose classes
are not found in the training dataset. Examples from ImageNet-O can be seen in Figure
3.3b. ImageNet-R [HBM+21] contains human-created renditions of ImageNet samples,

21

3. Related Work

Figure 3.3: (a) Example corruptions from ImageNet-C. (b) Example “natural adversarial
images” from ImageNet-A and ImageNet-O. (c) Example images from ImageNet-R.

for example drawings, paintings, origami, embroidery, sculptures, etc. (Figure 3.3c).
These ImageNet adaptations offer a way to test a network against visual perturbations,
albeit with a more systematic and less interactive approach than our work.

3.2 Visual Analytics in Deep Learning

In recent years, a vast amount of work on deep learning visualization has been published.
We refer the reader to the recent survey by Hohman et al. [HKPC19] for a comprehensive
report on deep learning visual analytics. The relevant visual analytics work presented
in the following paragraphs can be roughly grouped by the target group, divided into
experts and non-experts, as well as the task they have been designed for: Education,
model understanding and model improvement.

Visual analytics applications designed for non-experts usually require minimal prior
deep learning knowledge and can be used for educational purposes. They are often
designed as “playgrounds”, where a user can interact with a simple GUI without having
to write any code. Furthermore, many of these applications include educational content,
like text explanations, directly into the interface. Notable examples are TensorFlow
Playground [SCS+17] and GANLab [KTC+19]. TensorFlow Playground supports the

22

3.2. Visual Analytics in Deep Learning

Figure 3.4: Interface of TensorFlow Playground. Image from [SCS+17].

interactive modification and training of deep neural networks in the browser. A multi
layer perceptron’s (MLP) architecture can be defined via controlling the number of layers,
number of units per layer, and the activation funtions. GANLab similarly supports
interactive experimentation with Generative Adversarial Networks and allows users to
slowly step through the training iterations of generator and discriminator. Both applica-
tions are accompanied by multi-paragraph explanatory text. CNN Explainer [WTS+20b]
visually explains the inner workings of a CNN. It depicts connections between layers
and activation maps and allows the user to choose the input from a pre-determined set
of images. Like these examples, Perturber is also an application that runs in the web
browser, but allows users to manipulate input images fully interactively and to observe
model responses simultaneously.

Harley [Har15] published an online tool where users can draw digits interactively. The
drawing is fed into a small MNIST-trained network and the responses of all neurons
are visualized in real-time. This is very similar to our work in that the application
allows the user to manipulate the input image while observing the network output. The
application provides an MLP, as well as a CNN. Adversarial Playground [NQ17] enables
users to compute adversarial attacks and instantly observe the changing predictions of
a simplistic MNIST-trained network. Contrastingly, Perturbers purpose is to facilitate
the user’s understanding which perturbations have a large impact on a complex CNN,
and why. Therefore, we work with an ImageNet-trained Inception V1, complex 3d input
scenes including animals or man-made objects placed in various environments, and a
large collection of perturbation methods to manipulate the input scene and to thereby
attack the model.

23

3. Related Work

Figure 3.5: Interface of the TensorFlow Graph Visualizer. On the left an overview of the
whole graph structure is shown, on the right a subscope has been opened to show the
contained sub-graph in more detail. Image from [WSW+18].

Visual analytics tools for experts have been created with a wide range of purposes. Graph
structure visualizations, like the TensorFlow Graph Visualizer [WSW+18], provide users
with a depiction of their model’s structure, which is often a highly complex network of
layers and connections. Others focus on training and record detailed metrics over the
course of the training process. DeepEyes [PHVG+18] and DeepTracker [LCJ+19] are
examples of applications that fall into this category. DeepEyes focuses on “debugging”
problems such as degenerated filters or redundant layers whereas DeepTracker can help
detecting anomalous training iterations. ExplAIner [SSSEA20] is implemented as a
Tensorboard plugin and helps users to better understand their models by providing a
collection of various existing explainability methods.

While the before described tools all facilitate the examination of a single model, others
support the comparison of multiple models. These can have a shared architecture with
different weights, or different architectures. For example, REMAP [CPCS20] allows users
to efficiently improve model architectures. This is facilitated by ablation (i.e. removing
single layers of an existing model) and variation (i.e. creating new models by replacing
layers). The users can then compare the found model architectures regarding their
performance through various metrics. Ma et al. [MFH+20] designed multiple coordinated
views letting experts analyze model behaviors after fine-tuning. Users can visually
compare the model between original and fine-tuned state through a matrix of neuron
similarities. Their application also lets users inspect extracted features through feature
visualizations. CNNComparator [ZHP+17] focuses on comparing the architecture and the
output of a selected input image between two CNNs. In contrast, the focus of our work lies
on interactive modification of the input image and instantaneous comparative inspection

24

3.2. Visual Analytics in Deep Learning

of the network responses. Rather than letting the user select pre-determined input images
with a ground-truth class label from a fixed set, we therefore let users generate and
perturb input images from 3d scenes in a playground-like manner. Additionally, users can
observe the real-time classification predictions and real-time activation maps of individual,
relevant neurons.

Prospector [KPN16] has been designed for tabular data and can show the influence of a
feature on the prediction while keeping the other features fixed, a visualization known
as partial dependence plot. It also allows interactively changing features of individual
datapoints through a slider-based interface, where each slider manipulates one feature.
The what-if-tool [WPB+20] similarly allows modifying feature values while observing the
changing prediction, but also supports the user in assessing fairness as well as balance with
respect to feature distributions in the dataset. NLIZE [LLL+18] specializes on natural
language processing and, in addition to supporting interactive input perturbations, allows
the user to interactively modify the intermediate results within the model. LIME [RSG16]
is a generally applicable framework, where perturbed samples around an input point
of interest are used to facilitate local interpretability. LIME takes advantage of the
fact that while ML models usually have a highly non-linear prediction landscape, the
neighbourhood around a single datapoint is often linear. This allows to approximate the
original model within this neighbourhood by a linear model, which is highly interpretable
by default. LIME is purely input/output based and thus is suitable for explaining
black-box models. Neither of these systems lets the user interactively probe an image
classification model by perturbing an input image like Perturber. While LIME supports
investigating image classifiers, the computation is performed offline and the result is then
presented to the user afterwards.

To help explaining a CNN, there are sophisticated techniques to visualize the learned
features of the model’s hidden neurons. Feature visualization is such a method and is based
on activation maximization [EBCV09] in combination with a selection of regularization
techniques [YCFL15, OMS17].

Feature visualizations have been used as the base technique for a multitude of visual
interfaces. For instance, Carter et al. [CAS+19] used feature visualizations to depict the
feature space of layers of interest by projecting sampled activations onto the 2d plane
through dimensionality reduction (Figure 3.6). Cammarata et al. [CCG+20] used feature
visualizations to find and investigate causal relationships between neurons in CNNs.
OpenAI Microscope [Ope] is a system that comprehensively documents the response
patterns of individual neurons in multiple large CNNs.

In visual analytics tools, feature visualizations have been used to compare learned
features before and after transfer learning [MFH+20] or to visualize a graph of the
neurons with high impact for a selected target class and their connections [HPRPC20].
Similarly, Bluff [WTS+20a] depicts a graph where neurons are represented by their
feature visualizations to visualize neurons which are most impacted by adversarial attacks.
In contrast to Perturber, the adversarial attacks visualized by Bluff are precomputed. Its
interface is shown in Figure 3.8.

25

3. Related Work

Figure 3.6: Activation atlas of Layer “mixed4e” from Inception V1. Screenshot from
Carter et al. 2019 [CAS+19].

Saliency maps (or attribution maps) show the significance of the input image’s regions with
respect to the selected target class or network component [SVZ14] and have also become
popular interpretability tools. Saliency maps and other gradient-based methods like
LRP [LBM+16], Integrated Gradients [STY17], SmoothGrad [STK+17], or Grad-CAM
[SCD+17], however, necessitate a back-propagation pass which comes with significant
computational cost. A computationally less costly technique is to directly visualize the
forward-propagation activations of selected feature maps in intermediate layers. For
example, the DeepVis Toolbox [YCFL15] shows live visualizations of CNN activations from
a webcam feed. In contrast to attribution methods, this solution visualizes which image
regions activate individual neurons but provides no information about the significance
to the predicted class. The goal is to get a general intuition what features a CNN has
learned.

AEVis [LLS+18] shows “datapath visualizations”, allowing users to follow the effects
of adversarial attacks on significant neuron’s activations through the hidden layers of
a CNN. Datapaths in AEVis consist of critical neurons that are responsible for the
corrupted predictions. Computing the subset of critical neurons, which minimizes
the prediction change when isolated from the rest of the network, is one of the main
contributions of AEVis, setting its datapaths apart from the simpler pathways in Bluff.
While AEVis [LLS+18] is restricted to a fixed set of example input images for interactive
research, the DeepVis Toolbox [YCFL15] can process live webcam stream and visualizes
the hidden network layers responding to a continuously changing input. Similarly,

26

3.2. Visual Analytics in Deep Learning

Figure 3.7: Screenshot of the OpenAI Microscope. The left side shows a conceptual
depiction of the model architecture with multiple parallel layers. Each layer is represented
by a single feature visualization. When the user clicks on a layer node, they get presented
with a grid of feature visualizations for each neuron of the selected layer (not shown).
When they chose a neuron, they get shown a detail view (right side), which shows a larger
image of the feature visualization with both “channel” and “neuron” objective, dataset
examples, and tuning curves for various input variations (not visible in the screenshot).
Image is a screenshot of [Ope].

Perturber shows activations and predictions based on a live input. In contrast to the
DeepVis Toolbox however, Perturber renders input images from a steerable 3d scene and
provides a rich collection of input perturbation tools. Feature visualizations are directly
juxtaposed to activation maps, improving their readability. Additionally, Perturber
facilitates direct comparison between standard and robust models.

3DB [LSI+21] is a recently published framework for systematically analyzing and de-
bugging vision models using photorealistic rendering. The framework is based on the
same basic idea as Perturber: Varying a rendered 3d scene to analyze the responses of a
computer vision model to various perturbation parameters. Figure 3.10 shows an overview
of the framework. Compared to 3DB, Perturber trades off flexibility and systematic
control for interactivity. We hypothesize that an interactive tool like Perturber could be
highly effective for generating hypotheses to then be systematically investigated with
3DB.

27

3. Related Work

Figure 3.8: Bluff user interface. (A) With the Control Sidebar, the user can select which
data to include and highlight. (B) The Graph Summary View depicts a graph where
pathways through neurons that were most activated or changed during an attack are
highlighted. (C) The Detail View displays feature visualizations, dataset examples, and
activation patterns over attack strengths for a hovered-over neuron. Figure from Das et
al. 2020 [WTS+20a].

Figure 3.9: Screenshot of the deep visualization toolbox [YCFL15]. In the top-left, the
current image of the webcam-stream is shown. In the large center area, the activation
maps of the selected convolutional layer (“conv5”) are shown. On the right side, various
visualizations depicting what the selected neuron responds to are shown.

28

3.2. Visual Analytics in Deep Learning

Figure 3.10: Schematic overview of the 3DB framework. In a first step, the 3d objects and
environments are specified. Then, controls for perturbing the scenes are selected (Step
II), together with a search policy over these controls (Step III), and a computer vision
model to be investigated (Step IV). Based on the search policy, the framework selects
the scenes and the settings to render. Finally, the computer vision model is evaluated on
the rendered images and an analysis consisting of various visualizations and metrics is
presented (Step V). Figure from [LSI+21].

29

CHAPTER 4
Preliminary Analysis

Our visualization tool in its final form is the result of an iterative research process.
We started on the premise that feature visualization can give new insights about the
differences between standard- and adversarial training (H1), but a lot of intermediate
experiments were necessary to arrive at the final design. The results of these experiments
had significant influence on the subsequent design decisions.

Our early experiments mainly involved training CNNs with different configurations and
then generating feature visualizations for checkpoints throughout the entire training
process to compare the different training procedures visually. We summarize the results
from these experiments in Section 4.1.

In order to compare feature visualizations between different training methods effectively,
we needed to align their feature representations, pushing them to learn similar feature
detectors at the same neuron locations. It turns out that transfer learning is effective
at preserving feature representation when training with a variant of the dataset used
for initial training. Section 4.2 contains more details about transfer learning and its
behaviour regarding feature preservation.

As there has been an ongoing effort to investigate and categorize the role of single neurons
by Cammarata et al. [CCG+20], we adopt their model of choice, the original Inception V1
network [SLJ+15] instead of ResNet [HZRS16], which we used for previous experiments.
This enables us to integrate their already identified neurons and neuron categories into
our visualization tool.

The increased dependence on shape and low frequency features versus texture is a
characteristic that networks trained with Stylized ImageNet by Geirhos et al. [GRM+18]
share with adversarially trained networks. In their experiments, they showed that training
on their heavily augmented version of ImageNet leads to models that are more dependent
on shape and less dependent on texture, which is in contrast to standard-trained models.
In Section 4.4, we discuss our experiments with training on Stylized ImageNet, and take

31

4. Preliminary Analysis

a look at the feature visualizations we generated for those models. One might assume
that they are similarly rich in low frequency structure like those from an adversarially
trained model, but this is not the case.

4.1 Initial Experiments
In this section we present our experiments aimed at analyzing how feature detectors
in CNNs develop during training. To be able to make a useful comparison between
different training configurations, we perform each run with identical initialization and
identical data curriculum, preserving the order of the training examples shown to the
network. Early tests showed that even with the exact same initialization, a different
order of training images leads to the divergence of weights after a single-digit number
of iterations. In the presented experiments, if not stated otherwise, we train a ResNet
18 network on Restricted ImageNet [TSE+19], a subset of ImageNet grouped into nine
animal super-classes (“Dog”, “Cat”, “Frog”, “Turtle”, “Bird”, “Primate”, “Fish”, “Crab”,
‘Ìnsect’). For weight initialization of the convolutional layers, we use a variance scaling
initializer with weights normalized by the number of output nodes (“fan out” mode).

With our initial experiments we look at the following questions regarding feature de-
velopment during CNN training in general and during adversarial training as a special
case:

• When during training do feature detectors diverge in standard vs. adversarial
training?

• How do feature detectors develop during training in general, when viewed through
the lens of feature visualization?

• What is the influence of the perturbation epsilon (explained in Section 2.2.1)? Are
there any feature visualization characteristics that correlate with the perturbation
epsilon?

4.1.1 When Does Adversarial Training Diverge From Standard
Training?

To answer this question, we look at the weights of the first convolutional layer. In ResNet
18, this layer has 64 3d-kernels of shape 7 × 7 × 3. This means that we can visualize
the weights directly as 64 RGB images with a spatial resolution of 7 × 7, giving us an
undistorted view on how the weights of the first layer develop.

Figure 4.1 shows the development of six of the 64 kernels throughout standard training
(epsilon 0) and adversarial training with epsilons 0.001, 0.002, 0.05, 0.1 and 0.33 under
L2 norm. Recall that the epsilon value denotes the magnitude of the attack perturbation,
which is the difference between the attacked image and the original. We can observe
that in most neurons, a difference is clearly visible within the first 10 training steps. In

32

4.1. Initial Experiments

the orange-marked kernels, there is a relatively large non-linear difference between them.
In the red ones, the difference is slightly lower at iteration 10, but nonetheless becomes
striking later during training. In the cyan-marked kernels, the very low epsilon values
both lead to low-magnitude kernels. Looking at the final kernels (green boxes) after 30K
training steps and comparing them to the kernels produced with different epsilon values
does not reveal any intuitive relation between adversarial training epsilon and convolution
kernel. It is not surprising that a non-linear optimization process, like training a CNN,
leads to chaotic results over 30K steps. Nevertheless, the early divergence within the
first few training steps hints at the strong influence of adversarial perturbations on the
training process.

4.1.2 Development of Features During Training

To investigate feature development during training, we generated feature visualizations
for an arbitrary subset of neurons from multiple layers of a ResNet 50 model. We trained
the model with standard training and adversarial training. We did not fully train the
adversarial model as this would be prohibitively expensive computationally. Instead we
trained the standard model until the training error curve flattened significantly, then
trained another model adversarially for a similar amount of training steps. We made
all of our experiments on adversarial training with L2-bounded perturbations. In this
particular experiment, we used an epsilon value of 1.0. We compare the development
of the feature visualizations in Figure 4.2a and Figure 4.2b. The training step numbers
do not match exactly, as we saved checkpoints during training based on time intervals,
not on training step number. Although not ideal, this does not perturb the visual result
significantly enough to require a full repetition of the experiment.

We generated the feature visualizations without Fourier parameterization to highlight the
phenomenon of adversarially-trained models having gradients with more low-frequency
structure, as described by Tsipras et al. [TSE+19]. This phenomenon is the most striking
difference between the two visualizations and becomes apparent in the figures starting
with the third row (∼1K training steps). We can also observe the effective receptive field
growing during training in intermediate and late layer neurons, an effect that has been
theoretically described by Luo et al. [LLUZ16].

Although this comparison of feature visualizations during training confirmed known
phenomena, we were not able to deduce any hypotheses regarding the difference between
standard- and adversarial training. The fact that, in spite of identical initialization and
training schedule, the features diverge very quickly (as seen when comparing Figure 4.2a
and Figure 4.2b), led us to explore ways to better align the feature representation for a
direct comparison. We explain our findings in this direction further in Section 4.2.

33

4. Preliminary Analysis

Figure 4.1: Convolution kernels of 6 different channels (out of 64) from the first conv
layer of ResNet 18. Each 7 × 7 square is one kernel. Groups separated by horizontal
white space each correspond to one of the 6 channels. Within-group rows correspond to
different adversarial epsilon values. Columns signify training steps.

34

4.1. Initial Experiments

(a) Feature visualizations for various steps during standard training, rows correspond to training
steps 20, 110, 1150, 6160, 9560, 19000, 21780.

(b) Feature visualizations for various steps during adversarial training, rows correspond to training
steps 10, 120, 1020, 6000, 9990, 19020, 21780.

Figure 4.2: Comparison of feature visualizations during different training methods.
Feature visualizations are shown for Neuron 0 of several layers from ResNet 50. They
have been generated without Fourier parameterization, and they are cropped to the
approximate receptive field of the respective layer. Early layers are on the left side, later
layers are on the right side.

35

4. Preliminary Analysis

4.1.3 The Influence of the Attack Epsilon on the Feature
Representation

In Section 4.1.2 we compared feature visualizations during standard training (adversarial
perturbation epsilon of 0) with feature visualizations during adversarial training (using
adversarial perturbation epsilon of 1.0). To further investigate the role of the epsilon
value, we trained a series of models adversarially with increasing epsilon values. For this
experiment we chose a ResNet 18, which is significantly faster to train when compared to
the much deeper ResNet 50, but otherwise shares many of the larger model’s architectural
properties. We trained on Restricted ImageNet with batch size 256 for 30K training steps.
Then, we generated feature visualizations for Neuron 0 of the first convolutional layer
and the final ReLU-layers of each of the eight residual blocks. The result is shown in
Figure 4.3, where each row corresponds to one epsilon value and each column corresponds
to one layer.

We can see a strong difference regarding spatial image frequency between feature visualiza-
tions of the last layer (right-most column in Figure 4.3). The further we look left towards
earlier layers, the less we can spot a perceivable difference in image frequency between
epsilon values. We can also observe that the frequency difference between 0.33 (third
row from bottom) and 1.0 (bottom row) is hardly perceivable, suggesting a saturation
effect of the phenomenon. This saturation seems to happen at even lower epsilon values
in earlier layers, although a meaningful visual comparison is prevented by the lack of
alignment of features between the models.

4.2 Adversarial Transfer Learning

The experiments we described so far all involved training from scratch, meaning they
all started from a fixed-seed randomly initialized model. We learned that adversarial
training diverges early during training and converges to a completely different feature
representation than standard training, even with small perturbation epsilons.

As mentioned in the previous section, the non-alignment between features makes it
hard to compare features learnt by individual neurons. The (fixed-seed) random weight
initialization we used to train our models does not give the optimization enough direction
to enforce a consistent feature representation across the hyper-parameters we vary in our
experiments.

This leads us to investigate possibilities for training CNNs adversarially in a feature-
preserving way. Transfer learning, as explained in Section 2.1.3, is a widely used technique
among deep learning practitioners for adapting a pre-trained model to a specific task.
For our purpose, “adversarial transfer learning” turns out to preserve the model’s
feature representation well enough to enable visual re-identification of features across all
convolutional layers after training. We show examples of feature visualizations before
and after adversarial transfer learning in Figure 4.4.

36

4.2. Adversarial Transfer Learning

Figure 4.3: Feature visualizations (without Fourier parameterization) of Neuron 0 of
several layers (from left to right) from ResNet 18. Each row corresponds to one L2 epsilon
value used for adversarial training. From top to bottom: 0 (std. training), 0.001, 0.002,
0.05, 0.1, 0.33, 0.66, 1.0.

37

4. Preliminary Analysis

It is important though to make a distinction to commonly used transfer learning here.
Usually, transfer learning is used to either take advantage of the better generalization
capabilities of a network that has been pre-trained on a larger dataset before being
fine-tuned to a smaller dataset, or to save computational resources when a complete
training run would be too expensive. In our case on the other hand, transfer-learning is
done on a variation of the original dataset. This allows us to specifically investigate the
effect of the type of variation we use to modify the original dataset. Allen-Zhu and Li have
investigated adversarial transfer learning [AZL20]. They provide detailed mathematical
explanations and proofs for a phenomenon they describe as “feature purification”. We
take a more visual approach and generate fine-grained progressions of feature visualization
along the training. Szabo et al. [SKC+20] showed evolving feature visualizations, similarly
to us, although during “traditional” transfer learning from one dataset to another. One
example from their paper is transfer learning from ImageNet to Places2 [ZLK+17].

Figure 4.4: Examples of single-neuron feature visualizations (“neuron” optimization
objective in Lucid) from Inception V1. Visual similarity is encountered at neurons in all
layers, although later layers tend to diverge at a higher rate. The “mixed5a” example
had to be cherry-picked, as many neurons do not have such a strong visual similarity
before and after adversarial transfer learning. In early layers, most neurons are easy
to recognize after transfer learning, but often minor semantic changes are visible (for
example color shift in “mixed3a:210”).

4.2.1 Adversarial Transfer Learning Preserves Feature Representation

We started our investigation of adversarial transfer learning on ResNet 18. We took a
model that had been trained on Restricted ImageNet with standard training for 33K
training steps and trained it adversarially on the same data. We saved checkpoints every
10 training steps during training. Figure 4.5 shows the feature visualizations for the

38

4.3. Adversarial Transfer Learning with Inception V1

third neuron of 9 layers during training steps 0,10,20,40,200, 500, 1000, 6000, 12000 of
adversarial fine-tuning. The feature visualizations have been generated without Fourier
parameterization, a technique often used for generating more pleasing images. We thus
avoid biasing the visualizations towards a more evenly distributed frequency spectrum.
We can see that the features in all layers preserve their high-level appearance while
becoming significantly richer in low-frequency information.

While the increase of low-frequency content is to be expected from the discoveries by
Tsipras et al. [TSE+19], the fact that the visual feature semantics get mostly preserved by
adversarial transfer learning, is a non-trivial discovery. This in turn enables us to directly
compare feature visualizations and weights from standard- and adversarial models against
each other.

4.3 Adversarial Transfer Learning with Inception V1
Our experiments with ResNet 18 and Restricted ImageNet showed that with this
model/dataset combination, adversarial transfer learning preserves the feature represen-
tation to a very high degree. As this network is comparatively shallow and the dataset is
very simple in terms of the number of classes, those results do not necessarily generalize.
To test this behavior on a deeper model and a larger dataset, but also to be able to take
advantage of existing interpretability research such as the Circuits project, we repeated
the adversarial transfer learning experiment with Inception V1 and (non-restricted)
ImageNet. For this, we extracted the weights from the trained Inception V1 model
accessible through the Lucid feature visualization library.

During this experiment, we encountered an interesting phenomenon that we did not
observe with ResNet 18 / Restricted ImageNet. The error rate stayed roughly constant
at 1.0 during the first 10K training steps, then steeply dropped to 0.6 top 5 training error
at around training step 15K, and then continued to decrease more slowly. To analyze
this further, we estimated activations from the validation set for multiple steps during
training and correlated them with the activations at the initialized state (step 0). The
activations were estimated from a random subset of 512 images from the validation set.
As an example, for layer “conv2d0” with an output resolution of 112 × 112 and 64 output
channels, this would result in an activation tensor of shape 512 × 112 × 112 × 64. We
then combined the first three dimensions and sampled 20K values from the combined
dimension, resulting in a tensor of shape 20.000 × 64 for our “conv2d” example. This
tensor was then flattened to be correlated with an identically calculated (and identically
sampled) vector from another training step. We plotted these correlations, separated by
layer, in Figure 4.6.

Similarly, we compared the learned weights per layer over the training by correlating
them with their initial state (Figure 4.7). We can see that during adversarial transfer
learning, all but the first three layers experience a significant intermediate drop of
activation correlation, before recovering around training step 15K. This recovery happens
approximately between training steps 10K and 15K, which is also where the error rate

39

4. Preliminary Analysis

Figure 4.5: Feature visualizations (without Fourier parameterization, cropped to approxi-
mate receptive field) of Neuron 2 of several layers (early layers left to later layers right)
from ResNet 18 during adversarial transfer learning starting from a standard-pre-trained
network. Training steps: 0,10,20,40,200, 500, 1000, 6000, 12000.

40

4.3. Adversarial Transfer Learning with Inception V1

Figure 4.6: Activation correlations: Activations over the ImageNet validation set for
multiple steps during training are compared with the activations at the initialized state.
For “mixed” blocks, the concatenated activations of all sub branches before the ReLU
layer have been evaluated (“pre_relu”). X-axis represents fine-tuning iteration, y-axis
represents correlation coefficient. Refer to the main text for a detailed explanation.

41

4. Preliminary Analysis

Figure 4.7: Weight correlations: Correlation coefficients (y-axis) of learned weights from
each layer correlated with their initial state. X-axis represents fine-tuning iteration.
Coefficients for all layers within a “mixed” block have been summarized by their mean.
Refer to the main text for a detailed explanation.

42

4.3. Adversarial Transfer Learning with Inception V1

decreased most significantly during training (Figure 4.8). The weight correlation stays
high for all layers until around training step 10K, after which “conv2d1” and “conv2d2”
start to change gradually. After around training step 15K the other layers’ weights also
start to change, but less than “conv2d1” and “conv2d2”.

Figure 4.8: Left: Training error during adversarial transfer learning on ImageNet. Right:
Training error during transfer learning on Stylized ImageNet.

This phenomenon seems to be only caused by adversarial fine-tuning, as our experiments
with Stylized ImageNet did not result in similar behavior (Figure 4.8 right, middle of
Figures 4.6 and 4.7). We hypothesized that the fact that Inception V1 has no batch
normalization (BatchNorm / BN) [IS15] layers is responsible for this phenomenon. We
designed an experiment to provide further evidence for this hypothesis. We constructed a
new model with a batch normalization layer after each convolutional layer and after each
fully connected layer. We initialized the weights of this new model with the Inception
V1 weights and trained for approximately 95K training steps until there was very slow
training progress (error curves shown in Figure 4.9 left). Then, we fine-tuned the resulting
model adversarially for more than 30K iterations. We observed that the error rate had
stopped decreasing even earlier, as seen in the error rate plot in Figure 4.9 right. We
generated feature visualizations (Figure 4.10 bottom) and plotted activation correlations
(Figure 4.6 bottom), as well as weight correlations (Figure 4.7 bottom) throughout the
fine-tuning process. We can see that the phenomenon with the initial error-rate-plateau
and subsequent rapid drop that we encountered in the unaltered Inception V1 adversarial
fine-tuning is not observable in the BatchNorm-augmented version. Also, activation and
weight correlation plots for this training run look more regular.

We further made multiple models at important steps during training available in our
interactive application, enabling the detailed inspection of model behavior (including
activations, feature visualization and classification output).

43

4. Preliminary Analysis

4.4 Training with Stylized ImageNet

Madry et al. [MMS+18] provided evidence that PGD is the strongest first-order attack
within an Lp-bounded epsilon ball. Lifting the Lp-bounding constraint naturally opens
up the space of allowed image transformations to a large variety of clearly human-visible
perturbations. One such method is style transfer, which strongly distorts image texture
while keeping the overall structure and shape largely intact. Geirhos et al. [GRM+18]
showed that training on images with changed artistic style leads to a model that focuses
more on shape than on texture for its predictions. This can also be seen as a form of
robust training, forcing the model to learn a global structure rather than high-frequency
texture features.

To evaluate whether the low-frequency feature visualizations encountered in adversarially
trained (or fine-tuned) models are a unique phenomenon of adversarial training, we
generated feature visualizations for a model that has been fine-tuned on Stylized ImageNet,
starting from the same Inception V1 used as a base for our adversarially fine-tuned model.
As an example, we can have a look at the “dog head detector”-neuron “mixed4a:222”,
inspired by Olah et al. [OCS+20]. Over the course of the training, we can observe a
slight change in shape and color, but the overall “style” and frequency distribution is
very similar to the starting point (Figure 4.11). This experiment highlights the unique
properties that adversarial training induces on the learned features in CNNs. We made
several checkpoints of this fine-tuning experiment available in Perturber for detailed
inspection.

4.5 Conclusion of Initial Experiments

In our preliminary experiments, we explored various aspects of adversarial training:

• We showed the highly non-linear nature of adversarial training by comparing
learned features between CNNs with identical initialization and training schedule,
but slightly different perturbation epsilon.

• We proposed transfer learning as a feature-preserving method to obtain an adver-
sarially trained model that can be directly compared to a base standard model.

• We visualized the adversarial fine-tuning of ResNet 18 and Inception V1, found
an interesting behavior (features disappearing temporarily) in the latter, and
provided results supporting the hypothesis that it is caused by the absence of Batch
Normalization layers.

• Finally, we provided evidence that the low frequency, “human-aligned” feature
visualizations obtained from adversarially trained models are a characteristic phe-
nomenon by showing that training on Stylized ImageNet does not result in similar
feature visualizations.

44

4.5. Conclusion of Initial Experiments

Figure 4.9: Left: Training error during re-training Inception V1 on ImageNet after
inserting BN layers. Right: Training error during adversarially fine-tuning the resulting
model (also on ImageNet).

Figure 4.10: Feature visualizations of dog head detector throughout adversarial fine-
tuning for Inception V1 (top) and BN-modified Inception V1 (bottom). Top rows are
parameterized in Fourier space and with decorrelated colors, bottom rows do not use
these parameterization tricks and are directly parameterized as pixel images. It can be
seen that the BN-modified model does not exhibit the phenomenon where intermediate
checkpoints hardly allow any gradient to flow back to the input, preventing meaningful
feature visualizations without parameterization tricks. Even with the parameterization
tricks, the BN-modified version has a more gradual change of feature visualizations.

45

4. Preliminary Analysis

Figure 4.11: Feature visualizations of dog head detector throughout fine-tuning on
Stylized ImageNet. Top rows are parameterized in Fourier space and with decorrelated
colors, bottom rows are directly parameterized as pixel images. While the feature’s
appearance changes, the spatial frequency distribution does not change significantly when
compared to adversarial fine-tuning (Figure 4.10).

With respect to our first hyposthesis (H1), our results strongly highlight the distinctive
role of adversarial training. Increasing the magnitude of the adversarial perturbations
during training strongly correlates with the magnitude of low frequencies in feature
visualizations. For adversarial transfer-learning on Inception V1, we identified a clear
relation of the appearance of feature visualizations to the training progress in terms of
error rate. On the other hand, feature visualizations were not able to visually explain
the difference of training on Stylized ImageNet when compared to training on standard
ImageNet. H1 states that feature visualization can help explain the difference between
standard training and robust training in general. Our results on the other hand show
that feature visualizations clearly benefit the understanding of adversarial training, but
not necessarily the understanding of other robust training methods, training on Stylized
ImageNet in our case.

46

CHAPTER 5
Visual Analytics Design of

Perturber

Perturber aims to provide users an interactive playground where CNN output and
intermediate activations can be observed in response to input image changes, with the
ability to compare models with each other. Our hypothesis H2 states that by being able to
interactively manipulate a synthetic input scene with a large and diverse set of parameters,
and observing the changing activations instantly, researchers can quickly generate and
then confirm or reject hypotheses. By immediately observing effects of changes, they
can be more efficient in building a strong intuition for the highly complex behavior of
convolutional neural networks. Perturber is designed to facilitate the exploration of
robustness and potential vulnerabilities. This is reflected in the types of the provided
input perturbations and in the models provided for comparison: A standard trained
model and two robustly fine-tuned variants.

We formalize these aspects into six core requirements:

• R1: Rich input perturbations. The application should provide an extensive set of
tools to manipulate and perturb a synthetic input scene with fine-grained control.
These tools should be able to effectively probe the robustness of the models.

• R2: Interactivity. The application should be highly interactive and allow the user
to quickly explore CNN responses to input perturbations with instant feedback.
Complex visualizations which cannot be rendered in real-time should be avoided.

• R3: Visualize output and hidden layers. To be able to form hypotheses about
model behaviour, users should be able to view the output of a model, but also the
activations in hidden layers. Hidden layers’ activations contain information how a
model derived its output, and their understanding is one of the great challenges in

47

5. Visual Analytics Design of Perturber

ML interpretability research. Users should be able to build intuition by exploring
their responses under to a changing input scene.

• R4: Model comparison. Robust training methods result in models that are more
robust to targeted vulnerabilities. The application should let the user directly
compare robustly trained models to a standard trained model, to let them explore
how and where they behave differently.

• R5: Intermediate Checkpoints. In order to investigate the models during training,
the application should provide intermediate checkpoints at multiple stages during
training, including respective feature visualizations.

• R6: Model editing. To let the user explore how compatible the learned weights of
the fine-tuned model variants are, with each other and with the standard trained
base model, there should be a mechanism to mix their weights on a layer-by-layer
basis.

For the design of the application, we build upon our findings presented in Chapter 4:
To facilitate model comparison, we take advantage of feature alignment after transfer
learning. We incorporate multiple checkpoints during adversarial transfer learning, with
the checkpoint indices chosen to allow investigating the abnormal transfer learning
behaviour presented in Section 4.3. To allow further investigation of the findings from
Section 4.4, we provide both an adversarially fine-tuned model, as well as a model fine-
tuned on Stylized ImageNet in the Perturber application. Together with the standard
model, three models are provided. Apart from our own findings, we facilitate the
investigation of phenomena presented by others, such as the texture-shape cue conflict
presented by Gheiros et al. [GRM+18]. We will look at them in detail in Section 5.2.

The user interface of Perturber can be seen as a concise distillation of the most task-
relevant components from a larger set of building blocks that we had experimented
with during development. In order to design a feature-rich application without sac-
rificing usability, we showed prototype components to domain experts and discussed
the components’ usefulness with them. While the Scene View, responsible for input
generation, could be directly transferred to the Perturber interface, we chose to abandon
some of the more complex components. For example, we had developed a module to
generate two-dimensional tuning curves, similar to those found in the OpenAI Microscope
[Ope]. They are shown in Figure 5.1. Apart from showing the tuning curve plots, the
module could then compute and show clusters of neurons from a selected layer, allowing
the discovery of neurons with similar responses to the two varied parameters. During
discussions with our domain experts however, we found that the generation of tuning
curves was not in line with the goal of maximizing interactivity. Although generating
the tuning curve plots only took on the order of ten seconds, we decided that there was
no place for such functionality in the otherwise highly responsive Perturber application.
Additionally, instead of confronting the user with a more versatile but overwhelmingly

48

5.1. Overview

complex interface, we preferred to focus the user’s attention to a set of powerful core
interface components.

Figure 5.1: One of the components that we did not incorporate into the final version
of Perturber: A module for generating two-dimensional tuning curves. The 2d tuning
curve plots can be seen in the bottom row of the screenshot. The yaw-rotation of the
dog, as well as the texture influence have been varied. Each thumbnail shows the input
and is weighted according to the response of the respective neuron. Negative response
leads to a color-inverted thumbnail (purple here). The first column from left shows the
“right-facing dog head detector”. The corresponding tuning curve plot at the bottom
clearly shows positive responses for the right-facing dog inputs and negative responses
for the left-facing dog inputs, regardless of texture strength.

5.1 Overview
The general concept of Perturber is to provide an environment where the user can
interactively inspect model behaviour. We identify three main conceptual components
that can be used as standalone tools or in any combination between them.

• Interactive Exploration. Perturber is built around a 3d scene that can be
interactively manipulated in numerous ways. A 3d scene gives the user fine,
repeatable control over all aspects of the input image and lets them systematically
and independently perturb the scene parameters. This makes it preferable over
other potential input sources such as a webcam feed. Simultaneously to the user

49

5. Visual Analytics Design of Perturber

Figure 5.2: Input / Scene View (red); Intermediate layers / Model View (orange); Output
/ Prediction View (green).

manipulating the input scene, the activations at selected model stages (intermediate
layers, output layers) are displayed according to the current input. In intermediate
layers, these activations are 2d activation maps that can be displayed for selected
channels. Additionally, the top 5 predictions can be displayed in a bar-chart, with
dataset examples used to visualize class labels.

• Model Comparison. The user can choose two models out of the provided three
models to compare to each other. They are assigned to two slots in the interface
and subsequently denoted Model 1 and Model 2. Respective visualization interface
components are colored with two shades of blue, Model 1 corresponding to the
darker shade and Model 2 to the lighter one (as seen in Figure 5.2). The provided
models are based on ImageNet-trained Inception V1, with two fine-tuned versions
and intermediate checkpoints. As we discussed in Section 4.2, fine-tuning strongly
preserves feature representation, which makes direct per-neuron model comparison
possible. The user can compare activation maps and predicted class probabilities
in response to interactive scene perturbations, as well as pre-calculated feature
visualizations for various layers within the model and for various checkpoints along
the training process.

• Model Editing. Perturber provides tools for editing a model by either mixing
the weights between two models or by pruning the weights by kernel magnitude.
The edited model can be used in the above described exploration concepts. It can
be compared to either of the two base models by activation as well as by feature
visualizations, which can be generated for the edited model at interactive speed.

50

5.2. Scene View

The edited model can also be used to generate adversarial attacks for the input
scene. These can be seen as highly experimental features. We did not encounter
any existing tool that allows interactive weight editing, but we were able to make
interesting discoveries with it. We discuss them in Chapter 7.

The user interface has three main components that are arranged in columns. This
three-column arrangement symbolizes the data flow through the network, from input
(left) to prediction (right), as shown in Figure 5.2.

Starting on the left side, the Scene View (Section 5.2) serves as an interface to control
the generated input image by manipulating the 3d scene as well as 2d post processing
parameters. In the middle column, the specific models, which vary by training data
and iteration, can be selected and the activations of intermediate / hidden layers can
be inspected and compared. Also, the user will find the weight editing interface here, a
component that lets the user interpolate weights between Model 1 and Model 2, or prune
weights by magnitude. The resulting model, the Edited Model, is the third model for
which the various outputs can be visualized. On the right side, the classification logits of
each model can be viewed and compared among them.

5.2 Scene View
The Scene View gives the user control over the input image, serving as the base for the
exploratory analysis. It contains an interactive 3d scene that can be manipulated in
numerous ways that are aimed at testing the robustness of the models. The rendered
image of the 3d scene is resized to the model’s input size (224 × 224) and subsequently
used for inference to generate activation data interactively.

There are various examples in literature, where offline experiments are performed that
involve perturbing the input image of a CNN and measuring its activation change in
response to the input change:

• Synthetic Tuning Curves (Figures 5.3 and 5.4): This is a technique which
has its origins in neuroscience [BG06] and can be found extensively in the Circuits
project as well as on OpenAI Microscope [Ope]. Various simple two-parameter
synthetic image generation processes are grid-sampled over both parameters (for
example combinations of frequency, orientation, curve radius, gradient width, color
hue, etc.) and the response is plotted in a respective 2d grid. In Figure 3.7 at the
top, for example, we can see that the selected neuron responds more to slanted
patterns than to strictly axis aligned patterns.

• Error-rate heat map in response to frequency perturbation (Figure 5.5):
This is an example by Yin et al. 2019 [YLS+19], where a 2d parameter space
is grid-sampled in the Fourier domain. The resulting perturbation vectors are
sine-waves in varying directions and frequencies. They are used to investigate

51

5. Visual Analytics Design of Perturber

Figure 5.3: Example taken from the “Curve Detectors” article by Cammarata et
al. [CGC+20]. The authors explore the response of a specific neuron in a CNN by
varying synthetically generated curve images over combinations of orientation and radius
(top). The resulting response is plotted as a heatmap (bottom), additionally they show a
figure where the input image is weighted by the response (middle).

Figure 5.4: The same concept as the one shown in Figure 5.3 is used in OpenAI Microscope
[Ope], like shown in this screenshot. A pre-defined set of synthetic input images it fed
into the CNN and the response is plotted for practically each neuron in the model. All
input images are generated by 2 independently varying parameters.

52

5.2. Scene View

Figure 5.5: Figure taken from Yin et al. [YLS+19]. The authors use a 2d perturbation
space in the Fourier domain (direction and frequency) to investigate multiple model’s
(error rate-) sensitivity regarding noise of various frequencies. Examples of perturbed
images are shown in the bottom row, the heat maps show the error rate over the 2d
perturbation space.

Figure 5.6: Figure taken from Zhang et al. [ZZ19], where multiple model’s error rates are
compared in response to perturbations that either change the texture while preserving
shape (top, b - d) or destroy the shape while preserving texture (top, e and f). An
example parameter progression is depicted for “Saturation” in the bottom part of the
figure.

53

5. Visual Analytics Design of Perturber

Figure 5.7: The test cases from the Backgrounds Challenge [XEIM20]. In the top row,
the three cases without the foreground object are depicted, where the model can only
rely on the background or the foreground silhouette to make its prediction. The bottom
row shows the four cases with only the foreground object. Figure taken from Xiao et
al. [XEIM20],

multiple model’s robustness in different frequency bands. The results from that
work show that adversarially trained networks are very sensitive to low-frequency
perturbations but robust to high-frequency perturbations, whereas for standard
trained models it is the other way around.

• Shape- and texture-changing image perturbations (Figure 5.6): Zhang and
Zhu [ZZ19] investigate a set of image perturbations individually regarding multiple
model’s error rate change in response to perturbing the test set. They differentiate
between perturbations that destroy texture (at some magnitude) while preserving
shape (style transfer, saturation change), and perturbations that preserve texture
while destroying shape (Patch Shuffling). Most experiments in this work can be
seen as a one-dimensional grid-sampling. Among other findings, they show that
adversarially trained models are more sensitive to shape-destroying perturbations
like patch-shuffling when compared to standard trained models, whereas standard
trained models are more sensitive to texture-destroying perturbations, like saturation
or contrast changes.

• Exchange of backgrounds (Figure 5.7): Xiao et al. [XEIM20] investigate the
reliance of image classifiers on backgrounds. They introduce seven different test
variants, along with respective datasets, to facilitate their analysis. They find a
significant accuracy drop when swapping the background of an image at test time
with a background from another random class (Figure 5.7 “Mixed-Rand”).

All of the above-listed experiments involve automated offline computations where a well-
defined parameter space is grid-sampled before visualizing the result. They thoroughly

54

5.2. Scene View

investigated the respective networks’ behaviour to isolated perturbations, but they are
inherently limited in the possible combinations of parameter changes, as full grid-based
exploration of large parameter spaces is intractible. Also, any grid-sampling of a parameter
space is hard to visualize for more than two parameters. While a 2d heatmap is highly
readable, a number of parameters that goes beyond two can not be plotted effectively.
Additionally, most of these experiments either work well for early layers [CGC+20, Ope]
or output layers [YLS+19, AAB+15, XEIM20], while the intermediate layers with more
complex features are not being investigated [YLS+19, ZZ19, XEIM20] or would not be
useful as the later layers’ features are far more complex than the input images designed
for the respective experiment [CGC+20, Ope]. Intermediate layers often detect high-level
object parts like dog-heads, snouts, ears, tyres, car-windows etc. instead of low-level
shapes like curves or texture patterns. Using a 3d scene lets us generate fine-grained
variations of the input image, benefiting the investigation of units in intermediate layers.
We can probe them by varying the camera, rendering and post-processing parameters,
just like early layer units are probed by varying primitive shapes in OpenAI Microscope
[Ope] and by Cammarata et al. [CGC+20]. As our application is designed to be used
interactively, the user can intuitively direct the parameter combinations they want to
explore, instead of relying on inefficient high-dimensional grid-sampling.

5.2.1 3d Scene

Our primary 3d scene is designed to activate a large number of neurons in our ImageNet-
trained Inception V1 model. As almost 10% of ImageNet’s classes are dog breeds, many
neurons of our CNN respond to dog-related features [OMS17]. The choice of a dog
as our primary scene’s foreground object is therefore straightforward. We complement
the dog foreground object with a background image of a lawn. In order to expand the
exploration capabilities of the scene, we allow seamlessly morphing of the dog into a
cat. Likewise, we provide a secondary object pair of a race car and a fire truck that can
be morphed into each other. This second pair has been chosen to strongly contrast the
natural organic shapes of the animal pair with human-made, hard-surfaced machines. A
secondary background image of a street scene complements the race car / fire truck pair,
but the user is not restricted to these “matching” foreground / background combinations.
They can also test the model’s response to cue conflicts such as the race car in front of the
lawn background. Furthermore, the users can choose custom 3d objects and background
images from their local file system. The 3d file has to be in Wavefront OBJ (.obj) format.
Separate textures for diffuse color and for the alpha channel can be uploaded along with
the .obj file. The top two rows of Figure 5.8 show the morphing transitions from dog to
cat, and from fire truck to race car in front of their respective backgrounds.

The view can be manipulated by mouse interaction. Dragging within the scene area
rotates the camera along pitch- and yaw axes (but keeping the model centered in view),
scrolling dollies the camera. Middle-mouse dragging pans the view.

Beneath the 3d scene area, there are sliders for controlling the scene parameters, as well
as controls for performing adversarial attacks. To improve usability, they are arranged

55

5. Visual Analytics Design of Perturber

Figure 5.8: The top two rows show the morphing transitions from dog to cat, and from
fire truck to race car. The bottom row shows disentangled settings for shape and texture
morphing.

into semantically coherent groups. These controls and the reasoning behind including
them into the interface are described below in more detail. In total, Perturber provides 19
continuous input perturbation parameters, in addition to tools for generating adversarial
attacks, controlling the camera rotation, and changing foreground object or background
image.

5.2.2 Parameters

As understanding CNN robustness is the primary motivation behind the Perturber
application, the choice of parameters is designed to help with the testing of CNN’s
robustness. Besides the basic camera manipulation tools, some of the parameters
facilitate the disentanglement of shape and texture cues, inspired by the findings of
Geirhos et al. [GRM+18]. Others can perturb the image differently for separated spatial
frequencies, inspired by the work by Yin et al. [YLS+19]. Lastly, interactive adversarial
attacks let the user explore the model’s adversarial robustness. Nine of the parameter

56

5.2. Scene View

Figure 5.9: Top row: original, background blurred, background desaturated, texture
influence turned down, lighting influence turned down with texture influence turned down
additionally. Bottom row: blurred texture, reduced alpha, reduced saturation, increased
contrast (custom GLSL), low frequency band blurred (frequency decomposition).

effects are depicted in Figure 5.9.

We explain each of the parameters below. We use the exact spelling from the interface
which uses title case and is sometimes abbreviated. In case of abbreviations, we write
the full name next to the interface spelling. Generally, the parameters can be roughly
split into pre- and post-rasterization parameters. The pre-rasterization parameters affect
the scene before the rasterization stage, the post-rasterization parameters act on the
rasterized 2d image.

With this distinction in mind, the pre-rasterization parameters are grouped into:

• “Scene”: General parameters that affect lighting and textures in the scene.

• “Catness” / “Race Car-ness”: Parameters for morphing the foreground object
between dog and cat / fire truck and race car.

The post-rasterization parameters are grouped into:

• “Post Processing”: Simple, single-parameter post processing effects.

• “Frequency Decomp.” (decomposition): A slightly more complex post processing
effect with three parameters.

• “Adversarial Attack”: Parameters for controlling an adversarial attack on the
input image. The computed perturbation image is composed additively on top of
the final image resulting from all the other effects.

In the following paragraphs, we describe each of the parameter groups in more detail:

57

5. Visual Analytics Design of Perturber

Scene

In the “Scene” parameter group, there are parameters that control textures and lighting
in the scene. Providing disentangled controls for texture and lighting lets the user
test the respective influence on the activations. While lighting alone primarily induces
low-frequency shape cues, textures contain most of the high-frequency information of a
scene. The “Scene” parameters are designed as follows:

• With “Background Blur”, the user can investigate how the background texture
influences the activations. The blur has a wide range, with the background becoming
a solid color at the highest level. Blurring the background provides more fine-
grained control for testing the model’s reliance on background information than
swapping the background entirely.

• “Background Saturation” complements “Background Blur” for investigating
the model’s reliance on the background.

• “Texture Influence” controls the strength of the foreground object’s texture. By
default, it is set to 1.0, meaning that the texture is applied normally. Reducing
this parameter towards its minimum value of 0.0 interpolates the texture with solid
white, diminishing any texture cues on the foreground object.

• “Texture Blur” is another parameter that lets the user test the dependence on
texture features. Increasing it progressively blurs the texture of the foreground
object, with the maximum value leading to a solid color. Reducing texture influence
or increasing texture blur can reveal how much a model relies on texture for its
decisions. In the results section (Section 7.1), we show how a standard trained
model confuses a de-textured cat with various smooth surfaced objects, while the
adversarially and Stylized ImageNet trained models still mostly detect pointy-eared
animals.

• “Lighting Influence” controls the shading of the foreground object. It defaults
to 1.0, where the three lights in our scene have full influence on the Blinn-shading
of the foreground object. Reduced to 0.0, the object is shaded uniformly with a
value of 1.0. This parameter can be used for example to create a silhouette-like
shading of the foreground object, removing all features within the object’s bounds
except the color.

• Finally, the last scene parameter, “Feat. Vis.“ (feature visualization), can be used
to investigate feature visualizations as maximally activating images themselves.
The control is a checkbox combined with a text field, enabling the replacement of
the foreground object with a planar feature visualization texture of the user’s choice.
The plane with the feature visualization texture still is in 3d space and therefore
can be viewed through different camera angles and transforms. On the right of the
checkbox, the user can select the feature visualization to be displayed by typing

58

5.2. Scene View

Figure 5.10: Perturber’s functionality to display feature visualizations on a plane in
3d space allows investigating how invariant their respective units are to geometric
transformations of the input image. In this example, unit 222 from layer mixed4a is
tested. Each group shows the input image (left) next to the tested unit’s activation map
(top right) and feature visualization (bottom right). In the left group, we can see that the
feature visualization input without additional transformation causes strong activation in
the center of the activation map. In the right group, we can see that after a 60 degree
rotation, the strong activation in the center has been completely diminished.

into a text field with the format <layer>:<neuron#>. As feature visualizations
maximally activate a respective neuron, having the option to display them in the 3d
scene under different camera perspectives and with the additional post-processing
options, the user can investigate the invariance of the feature visualization image
to those perturbations. An example is shown in Figure 5.10.

Catness / Race Car-ness

As already described in Section 5.2.1, we give the user the possibility to explore the
model’s response to shape- and texture changes of the foreground object by providing a
parameter that seamlessly transforms the dog into a cat, or a fire truck into a race car.
The dog / cat class combination is particularly well suited on a geometry level because
of similar model topology and proportions, whereas the fire truck / race car combination
required more significant distortions. Notably, the rear “water tank” part of the fire
truck morphs into the much smaller rear spoiler of the race car. The 3d models within
each object pair share their topology, allowing for direct linear interpolation of vertex
positions. We also created textures with shared UV layout for each pair. All together,
this lets us blend the geometries as well as the textures smoothly between the respective
3d models, resulting in an effective morphing effect (Figure 5.11).

In the “Catness” / “Race Car-ness” parameter group, there are three sliders that control
the morphing of the foreground object. As there is an ongoing debate in deep learning
research about the ability of CNNs to learn high-level shape features versus just focusing
on texture features, we provide parameters to independently control the shape- and

59

5. Visual Analytics Design of Perturber

texture mix between dog and cat / fire truck and race car. For instance, the user can
observe the network output while gradually changing the dog texture to the cat texture
and keeping the dog shape fixed. Alternatively, they could do the inverse and keep the
dog texture fixed while gradually changing the shape from dog to cat. The respective
parameters are called “Overall Catness” / “Overall Race Car-ness” for linked
control of shape and texture and then “Shape Catness” / “Shape Race Car-ness”
and “Texture Catness” / “Texture Race Car-ness” for individual control.

Post Processing

This group contains simple post-processing effects that can be controlled by a single
parameter. They receive the rasterized 3d scene as input image and are applied suc-
cessively while preserving the original image dimensions. The post-processing effects
do not depend on the geometry of the 3d scene, they could operate on any rgb image.
Post-processing effects affecting contrast, brightness, hue and saturation are commonly
used in data-augmentation pipelines [SLJ+15, HZRS15]. Providing these operations
in the Perturber application lets the user investigate how they affected the model’s
robustness.

• “Alpha” defaults to 1.0 and simply darkens the image towards black when reduced.

• “Hue” goes from -0.5 to 0.5, which corresponds to -180/180 degrees on the color
wheel. This parameter shifts each pixel’s hue value accordingly.

• “Saturation” defaults to 1.0, reducing the parameter towards 0.0 de-saturates
the image until the result is a purely grayscale image at 0.0.

• In the “Custom Parameter”, the user finds a text field where they can write
their own GLSL code, taking a single parameter which is controlled by the slider.
The code snippet defaults to code for contrast adjustment.

• “Patch Shuffling” is an effect inspired by Zhang and Zhu 2019 [ZZ19] and can
reveal a model’s sensitivity to global structure, which gets highly disturbed by patch
shuffling. The image is divided into a grid of k by k cells, which are then randomly
re-ordered. A k value of 1 leaves the image unchanged. Examples analagous to our
implementation are depicted in Figure 5.6 (e) and (f), with k values of 2 and 4
respectively.

Frequency Decomposition

The frequency decomposition, labelled “Frequency Decomp.” in the interface, is a three-
parameter effect that splits the image into two separate frequency bands (low/high).
This is done by Laplacian decomposition: We blur the original image, which is our
low-frequency band. We subsequently subtract this low-frequency band from the original
image and thereby get the high-frequency band. Summing them together results in

60

5.2. Scene View

the original image. The user can investigate phenomena such as the one described by
Yin et al. 2019 [YLS+19], where the authors show that adversarially trained networks
are less sensitive to high-frequency perturbations but more sensitive to low-frequency
perturbations compared to standard trained models (Their results are shown in Figure
5.5).

The “Cutoff” parameter controls the separation frequency (blur radius of low frequency
image). Having the image separated into bands lets us manipulate them individually.
For both frequency band images we then provide three parameters each:

• “Low Alpha” / “High Alpha” control the magnitude of the respective frequency
band image. A fully reduced low frequency alpha replaces the low frequency
content with uniform gray. A fully reduced high frequency alpha just leaves the
low frequency content, being the blurred image with blur radius according to the
“Cutoff” frequency. Images with reduced high and low alpha can be seen in Figure
5.12.

• “Low Sigma” / “High Sigma” control the blur of the low and high frequency
images separately. Examples with blurred low and high frequency image can be
seen in Figure 5.12.

• “Low Hue” / “High Hue” let the user change the hue of the low and high
frequency image separately. This parameter is not inspired by existing work, but
can be used along alpha and blur to test a model’s sensitivity to perturbations in a
specific frequency range.

Figure 5.11: The top row shows various steps of the interpolation from dog to cat. Bottom
row shows the response of a right-facing-dog detector of Layer “mixed4a” to above shown
images. A gradually vanishing response can be observed.

61

5. Visual Analytics Design of Perturber

Figure 5.12: The three columns in (a) show the low and high frequency image for
increasing cutoff frequency settings. Low and high frequency images with high and low
alpha parameters set to zero respectively are shown in the top and bottom row. The
right-most column shows the effect of blurring the low (b) and high (c) frequency band
only. For (c), the low frequency alpha has been reduced for better visibility.

Adversarial Attacks

The manipulation capabilities described so far have been designed to test a model’s
robustness with perturbations that are clearly visible to humans. We are not interested
in limiting these parameters to preserve similarity to the original under a certain metric.
Conversely, adversarial attacks can perturb the image in a way that is often hardly visible
to humans, while changing the CNN’s output significantly. Understanding the difference
between adversarial training and other robust training methods, such as training on
Stylized ImageNet is one of Perturbers goals, inspecting the models’ reaction to adversarial
attacks is a key feature of the application. We give the user the ability to perform PGD
adversarial attacks (explained in Section 2.2.1) on the current scene image. The user can
choose:

• the model to generate the attack from (Model 1, Model 2, Edited Model),

• the target class, or simply to suppress the original prediction (untargeted attack),
and

• and the attack epsilon and Lp-norm (L2, L∞).

62

5.3. Neuron Activation View

Pressing the “PGD Step” button will perform one PGD step. The step magnitude is
one-eighth of the chosen epsilon value. The first step takes a comparatively long time
(around 10-20 seconds), as the gradient function needs to be computed. The gradient
function is then cached for subsequent calls. Letting the user press a button for each
individual PGD step was a design decision we made. It was based on the hypothesis that
having to wait for rather slow iterative updates would be a much poorer user experience
than controlling each step manually, thus being able to inspect activation changes after
each step. The top row in Figure 5.13 shows the results of strongly visible adversarial
attacks for various models

Once the adversarial attack is initiated, the resulting image (original image + perturbation
vector) is overlaid as a static texture on top of the scene. As the adversarial attack is
an iterative process, scene manipulation after the first iteration is not possible. We also
show class probability output for the original top class before the attack (top left), after
the attack (top right), as well as class probability for the current top class (bottom right)
as text overlay. Clicking into the scene area after an attack has been initiated resets the
attack and gives the user the ability to manipulate the scene with other parameters once
again.

With an active attack overlay, the user can use the “Attack Alpha” to fade the perturbation,
as well as the “Original Alpha” to fade the original image to solid 50% gray, leaving just
the attack vector when reduced to zero. This allows for a more interactive analysis of the
model’s behavior to attack strength, as fading the attack can be computed much quicker
than calculating it in the first place. Also, the attack vector itself can be inspected by
fading out the original image.

5.3 Neuron Activation View

The neuron activation view is the central interface for inspecting the effect on intermediate
convolutional layers. For each of the three models (Model 1, Model 2, and Edited Model),
activation maps are shown interactively for a selected layer and a selected group of
neurons. Feature visualizations are juxtaposed directly below to provide the user with
a hint at what the neuron above responds to, but also as an independent explorative
element.

Various visualization parameters let the user adjust the feature visualization to the
current use case. These parameters can be seen in Figure 5.14, orange box:

• “Naive Parameterization”: By default, we show feature visualizations with
a parameterization that better distributes the gradient onto all spatial image
frequencies (spatial decorrelation as explained in Section 2.3.1). For Model 1 and
Model 2 and whichever model is assigned to these slots, this means that the feature
visualization is parameterized as a frequency spectrum, transformed to an image by
inverse Fourier transform before being used as input for the network. For the Edited

63

5. Visual Analytics Design of Perturber

Figure 5.13: Top row: Strong (ϵ = 100.0) adversarial examples for the standard model
(left), the edited model with early layers until “mixed3a” from the adversarially trained
model, others from the standard model (middle), and adversarially trained model (right).
Bottom row: respective isolated perturbation vectors.

Model, a Laplacian pyramid [BA87] parameterization is used, having a similar effect
as the Fourier parameterization. When “Naive Parameterization” is checked, the
feature visualizations switch to a version that is parameterized in pixel space. This
leads to a much stronger visual difference between feature visualizations for standard
trained and adversarially trained models. The use of the Fourier parameterization
inductively biases the result towards a more equalized distribution, therefore we give
the user the option to choose. Also, “Naive Parameterization” feature visualizations
do not use decorrelated color space (see Olah et al. [OMS17], Section “The enemy
of feature visualization”). The difference is shown in Figure 5.15.

• “Show Activations”: Un-ticking this option will hide the interactive activation
maps. This saves computational resources and can be useful if the user is more
focused on inspecting feature visualizations alone than on investigating the model’s
response to input changes.

• “# of Neurons”: As a compromise between showing an extensive overview
and providing focus and computational speed, visualizations for four neurons are
shown by default. The user can choose to show up to 8 neurons when a larger

64

5.3. Neuron Activation View

Figure 5.14: This figure shows the Neuron View, located between the Interactive Scene
on the left and the Weight Editing pane on the right. It contains visualization parameters
(orange box), visualizations (green box), and model parameters (blue box). In the shown
configuration, number (#) of Neurons is maxed out at 8, which makes it possible to display
all neurons of the selected group (“mixed4a_curves”) at once. “Naive Parameterization”
is ticked off, so feature visualizations computed with Fourier / Laplacian pyramid
parameterization are shown. “Show Activations” is checked, so activation maps are shown
for each model. “Model 2” is ticked off, saving GUI space and computation time. For
the “Edited Model“, feature visualizations have been generated interactively by pressing
the “Play button” visible in the center of the feature visualization row.

overview is important, or reduce their number when focusing on a smaller set or an
individual neuron. Reducing the displayed number of neurons can also be beneficial
when the efficient use of limited computational resources is important, for instance
when interactively generating feature visualizations for the Edited Model (further
explained in Section 5.4.1).

• “Act. Normalization” (activation normalization): To display activation values,
we map positive values to red and negative values to blue. In order to provide a
visualization with well-distributed brightness values, the activation values have to
be normalized such that the values with the highest magnitude map to one. By
default, the activations are normalized by division with four standard deviations
of the whole layer’s activations. Presented in this way, the shown activations can

65

5. Visual Analytics Design of Perturber

Figure 5.15: Feature visualizations for various neurons from layer mixed4a. On the left
side, they have been generated with spatial and color decorrelation, whereas on the right
side, they use “naive parameterization”. The top row shows feature visualizations for
the standard trained model, where a strong difference in visual appearance can be seen
between the parameterizations. The bottom row shows feature visualizations for the
adversarially trained model, where the naive parameterization mostly impacts the colors,
but not the spatial structure.

only be seen in relation to other activation values of their layer. When the absolute
activation values are of interest, or when the selected neurons have activations in an
outlier value range, a manual adjustment of the normalization divisor can be useful.
The Activation Normalization slider lets the user gradually adjust the normalizing
divisor in an exponential way. The slider value is the log10 of the divisor if it is larger
than zero. A slider value of zero enables standard deviation-based normalization.
Figure 5.16 shows an example where manually setting the normalization divisor is
useful.

conv2d0 3
conv2d1 8
conv2d2 14
mixed3a 18
mixed3b 21
mixed4a 20
mixed4b 8+4
mixed4c 5+4
mixed4d 3+4
mixed4e 0+4
mixed5a 0+4
mixed5b 0+4

Table 5.1: Number of neuron groups per layer. “+4” represents the cat, dog, fire truck,
and race car relevant neurons we identified ourselves, the other numbers represent the
number of neuron groups identified within the Circuits project.

66

5.3. Neuron Activation View

Figure 5.16: An inspection scenario where manual activation normalization is useful:
On the left, the neuron view shows the activations for the unaltered input image, with
activation divisor set to 144. In the center, we can see how the activations change after
the input image has been darkened by reducing the “Alpha” parameter. The adversarially
trained model’s activations in the shown channel have clearly decreased in magnitude
(Model 2), whereas the standard trained model’s activations are hardly affected (Model
1). On the right we can see the same visualization using the default normalization, based
on layer-wide standard deviation: The different behaviour between the two compared
models is mostly lost in the visualization.

Beneath the visualization pane, the parameters for controlling model- and neuron selection
are located (Figure 5.14 blue box).

To allow the quick selection of interesting neuron groups, we provide pre-selected neuron
groups and categories for each layer, mostly taken from the Circuits project [CCG+20].
The top row contains the shared layer- and neuron group parameters. The user can select
a layer of interest on the left, for which the right selection box is then populated with
interesting neuron groups/categories. Examples of these neuron groups can be seen in
Figure 5.17. The number of neuron categories varies per layer. Table 5.1 shows these
numbers. These numbers reflect the fact that earlier layers’ features lack the expressive
power for a large variety of neuron categories. Layers in the midsection of the network
(“mixed3b”, “mixed4a”) have a large number of identified categories, later layers seem
to be increasingly polysemantic which makes identifying neurons in a distinguished way
harder. This is reflected again in their low number of neuron categories, although this
number might rise with the progress of the Circuits project. We provide our own selection

67

5. Visual Analytics Design of Perturber

Figure 5.17: Examples of neuron groups from different layers (from the Circuits project
[CCG+20]).

of cat, dog, fire truck and race car relevant neurons for the later layers, which we identified
by using Summit [HPRPC20]. Summit displays neurons which are important for the
prediction of a selected ImageNet class for each layer of Inception V1. We chose several
highlighted neurons per layer for “fire truck” and “race car”. For “dog” and “cat”, we
aggregated important neurons from multiple dog and cat breeds.

The model selection parameters below are color-coded with light blue for Model 1 and a
slightly darker blue for Model 2. Model 1 and 2 are slots that can be arbitrarily assigned.
Each slot has a menu for the training dataset with options “Standard”, “Stylized” and
“Adv. Trained”. Below is a slider that can be used to select a checkpoint at selected
iterations during fine-tuning. Iteration 1 of “Adv. Trained” is identical to the “Standard”
model, which does not allow choosing the iteration. The iteration slider loads the
respective checkpoint only upon releasing the mouse. This allows for efficient exploration
of feature visualizations along training checkpoints, as loading the model is a lengthy
process taking at least a few seconds and potentially much more depending on the internet
connection speed of the user.

The color-coding for the model slots is used anywhere in the application where model-
specific information is displayed or selected. In addition to the two shades of blue for
Model 1 and Model 2, a yellow color is used for the edited model. We describe the editing
model and the corresponding editing interface component in Section 5.4.

The central part of the neuron view is the activation and feature visualization view (green
box in Figure 5.14). It consists of one row of activation maps and one row of corresponding
feature visualizations per model. To avoid cluttering the interface with visualizations that
are not of current interest, the user can enable / disable the visualization pair for each
model with a checkbox. Often the user might want to focus on inspecting one model
individually or comparing two models with each other instead of looking at all three
models. The checkboxes share the common color encoding for Model 1, Model 2 and

68

5.4. Weight Editing

Edited Model. The visualization rows for each model are also framed with the respective
color. This leads to an intuitive association of the visualization row with the model. The
visualization rows are additionally labelled in the upper left corner.

5.4 Weight Editing
The interactivity of Perturber allows for direct inspection of model activation changes in
response to input scene changes. As the model activations depend on a) the input to, and
b) the parameters of the model, a natural extension of our interactive model exploration
is the interactive editing of the parameters (meaning the weights) of the model.

Figure 5.18: Top part of the weight editing interface for mixing (left) and pruning (right).
The editing mode is chosen in a drop-down menu (“Editing Mode”) at the top of the
component. The “Prune” mode displays range sliders which allows the user to define a
relative range from minimum- to maximum-magnitude weights of the respective layer
to be kept, while out-of-range weights get multiplied by zero. Sliders continue below
“conv2d2” for all other layers.

While many ways of editing weights could be imagined, ranging from scaling and shifting
to hand crafting weights [CGC+20], we restrict Perturber to two options, whose interface
components can be seen in Figure 5.18:

• Mixing weights from two different models. We give the user the possibility to
mix weights from Model 1 and Model 2 together. Mixing weights from two models
with similar feature representations lets the user explore how mixing the weights
influences the prediction result, as well as robustness. As our provided models are
either a base model or one of its fine-tuned variants, feature alignment is relatively
strong. We found that combining layers from two feature-aligned models does not
necessarily destroy the prediction result and we provide this functionality in our
application to be further explored. There is one slider for each of the “conv2d”
layers and for each “mixed” block. This slider controls the interpolation between
the weights from Model 1 and the weights from Model 2 for the respective layer or

69

5. Visual Analytics Design of Perturber

block. In high level terms, a layer uses the weights from Model 1 when its slider is
set to 0 (left side) and the weights from Model 2 when it is set to 1 (right side). In
between values linearly interpolate between Model 1 weights and Model 2 weights.
Formally this can be written as

Wmixed
l = Wm1

l · (1 − αl) + Wm2
l · αl (5.1)

where Wmixed are the resulting weights for the edited model, Wmk are the weights
of Model k, α is the slider value and l the layer/block index. For the blocks, all
included layers share one interpolation parameter.

• Pruning weights based on magnitude. Another weight editing method we
provide is pruning by magnitude. Pruning is often used for model compression
when limited memory is a concern, such as on mobile devices. We implement
pruning to give the user the possibility to investigate network activation and feature
visualization changes in response to switching off entire branches within the network.
There exists a multitude of pruning techniques, most of which are based on either
weight or gradient magnitude. Our pruning method is a simple variant where entire
filters are cancelled out by their average absolute input weight magnitude.
We calculate the average absolute value over the spatial- and input filter dimensions
for each weight kernel. We get a vector m with a length of the number of output
channels. For a convolutional layer this can formally be written as

m =
∑

y

∑
x

∑
i

|Wyxio| (5.2)

where y and x are indices for the spatial dimensions of the 4 dimensional weight
kernel W, i is the input channel index and o is the output channel index. For a
fully connected layer this would be simplified to

m =
∑

i

|Wio| (5.3)

We then sort the values of vector m in ascending order:

s = argsort(m) (5.4)

where s contains the sorted indices of averaged weight magnitudes. From s we get
to the pruning mask vector p by setting the value of p to 1 if its index within s is
in the kept range, and to 0 otherwise:

psn =
{

1, if rl · O < n < ru · O

0, otherwise
(5.5)

where rl and ru are the lower and upper pruning range values, O is the number
of output channels and n indexes s. In other words, elements of p get assigned 1

70

5.4. Weight Editing

if the average weight magnitude of the corresponding output channel is within a
percentile range delimited by rl and ru.

Finally, we multiply the original weight kernel Worig by the pruning mask vector
p to get the pruned kernel Wpruned:

Wpruned = Worig · p (5.6)

5.4.1 Interactive Feature Visualizations

Figure 5.19: Using the interactive feature visualization component, the user can explore
the effects of weight editing onto the feature representation. In the three screenshots,
different weight mixing configurations are depicted, along with their different interactive
feature visualizations (bottom row). The example is explained in detail in the main text.

To let the user compare feature visualizations between the base models and the Edited
Model, we provide a mechanism to generate feature visualizations on the fly for the
Edited Model. As explained in Section 4.1.2, feature visualizations for standard and
adversarially trained models have highly different appearance. We therefore assume that
generating and inspecting feature visualizations while editing a model’s weights can be
informative about the adversarial robustness of the Edited Model’s current state. We
present a quantitative experiment supporting this assumption in Section 7.2.

Figure 5.19 shows an example how the interactive feature visualizations can help exploring
the effects of weight editing onto the feature representation. In the left screenshot, the
Edited Model uses weights from the standard trained model (assigned to Model 1) for
the first two layers and weights from the adversarially trained model (Model 2) for the
rest. The feature visualizations have been generated for several curve detectors from
layer “mixed4a”. The top row shows feature visualizations for Model 2, the bottom row
shows feature visualizations for the Edited Model. We can see that the bottom row is
much more high-frequency heavy than the top row. In the central screenshot, the last
two layers with influence on the shown feature visualizations (“mixed3b”, “mixed4a”) use
weights from the standard trained model and the rest use weights from the adversarially
trained model. Looking at the feature visualizations generated for the Edited Model
(bottom row), we can see that in the center screenshot they contain more low-frequency
structure than in the left screenshot. We conjecture that the first two layers are more

71

5. Visual Analytics Design of Perturber

important for the low-frequency structure of the adversarially trained model’s feature
representation than the later layers. In the right screenshot, the Edited Model only uses
weights from the adversarially trained model. The generated feature visualizations, as
expected, look almost identical in structure to the pre-computed ones for Model 2. The
remaining visual difference can be explained by the slight implementation differences
mentioned in Section 6.2.3.

Figure 5.20: The top row shows feature visualizations for a pair of fur-detecting neurons
from Layer “mixed4a” created with python-based feature visualization library Lucid,
the bottom row shows feature visualizations for the same neurons generated by our
TensorFlow.js implementation, adopted from LucidPlayground [SW19]. Left, two neurons
are from a standard trained model, right two neurons are from corresponding adversarially
fine-tuned model.

5.5 Prediction View

The Prediction View (5.21) shows the top 5 classification results for each model. This
allows the user to observe the classification changes resulting from input changes or model
editing operations, and to compare those between models.

The top result is represented by a large class example, as not all ImageNet classes are
easy to understand from just their name. This also provides an easy to grasp visual
representation, leading to a more intuitive exploration. Hovering over a different top 5
class than the first one replaces the example image with an example from that respective
class.

As running the full model on the input image is a rather time consuming operation, we
provide toggles to enable and disable this component for each model individually. The

72

5.5. Prediction View

Figure 5.21: The Prediction View displays the Top 5 classification results for each model.
The top result is represented by a large class example. Below the class example there are
five rows with the class names and bars representing respective logit values of their class.
The bar length is normalized by the maximum value. We also provide absolute values
inside the bars as written numbers to represent absolute scale.

Prediction View is the most significant bottleneck of the whole application, disabling it
when not needed can lead to a massive speed up when computational power is limited.

73

CHAPTER 6
Implementation

This chapter describes implementation details for both the preliminary experiments
and the visual analytics application. Our early feature visualization experiments were
first performed independently from the development of the Perturber visual analytics
application. The experiments used a different eco-system based on Python, whereas
the visual analytics application is based on JavaScript. Bridging the gap between them
and making training checkpoints generated during our preliminary experiments available
in our interactive application was not trivial and could only be achieved by significant
workarounds.

We will describe the implementation details for our preliminary experiments as well
as the model conversion workarounds in Section 6.1. The visual analytics application
implementation details will be described in Section 6.2.

6.1 Preliminary Experiments
In this section we provide implementation details for the various components of the data
generation pipeline. The data generation pipeline consists of model training, generation
of feature visualization, and model conversion.

6.1.1 Adversarial Training

Our training code is based on code by [TSE+19], which uses Tensorpack [W+16] for multi-
GPU training. For our preliminary experiments with ResNet 18 we modified the code
to facilitate fixed initialization and a deterministic dataset schedule. This was done by
disabling non-deterministic parallel data pre-processing from Tensorpack. For generating
the weight kernel visualizations in Figure 4.1, we wrote a custom callback function
that attaches the reshaped and normalized kernel as an RGB image to Tensorpack’s
training-“monitors” via the put_image function.

75

6. Implementation

We restrict ourselves to L2-bounded adversarial training. We experimented with multiple
ϵ values ranging from 0.0001 to 1.0, where ϵ = 1.0 denotes the length of the full range of
floating point intensity values, corresponding to a value of 255 for images of data type
uint8. The significant results from these training runs have already been discussed in
Section 4.1.

The training code requires Tensorpack version 0.8.5. For freezing the model weights
and exporting the trained model to a TensorFlow Protobuf file, we use Tensorpack’s
“ModelExporter” class, which requires Version 0.9.8.

6.1.2 Feature Visualization

For the generation of our feature visualizations we use the Lucid feature visualization
library at Commit 246ef62. We modified the code to facilitate correctly fixing the
random initialization of the visualizations by seeding NumPy’s random generator in the
render function of the optvis module in addition to the already available fixed seeding of
TensorFlow’s random generator.

We mostly use Lucid’s default parameters for generating feature visualizations and vary
only layer and neuron in the “neuron” objective. For our non-Fourier-parameterized
feature visualizations we pass on fft=False as well as decorrelate=False to the image
function of the param module.

6.1.3 Conversion to TensorFlow.js

Perturber is built using TensorFlow.js (TFJS) and therefore requires models to be
provided in the custom TFJS format, which consists of a JSON file containing the graph
definition as well as binary files containing the weights. TFJS comes with a converter
that can convert a multitude of TensorFlow model files into TFJS-compatible model files.
The converter needs to receive a Keras Layer Model file as input.

We therefore re-implemented our models as Keras Layer Models and initialized them
with the weights of the Protobuf model files exported from Tensorpack. We then saved
H5 files with Keras’s Model.save function before converting them with the TFJS model
conversion tool.

Inception V1, our model architecture, contains local response normalization (LRN) layers.
This type of layer is neither available in current versions of Keras nor in TensorFlow.js.
We adopted an LRN layer implementation for our Inception V1 Keras re-implementation.
Besides creating the respective entry in the Keras model file used for conversion to the
TFJS format, the working LRN implementation in Keras allowed us to test our Keras
model against the original Inception V1 model in native TensorFlow, and verify that
they output identical activations in various layers.

While a custom LRN layer implementation leads to a respective entry in the Keras
model file, as well as the JSON file resulting from the TFJS conversion, a corresponding
implementation has to be available on the loading side as well. On the TensorFlow.js side

76

6.2. Perturber

we therefore also had to make some modifications to get the LRN layer to work correctly.
We describe this further in the next section.

6.2 Perturber
Our final application has evolved from a minimal proof-of-concept prototype to a feature-
rich but complex application and then to a more clear and concise reduced version that
balances user experience with amount of features. In the following subsections we will
provide some background about the decisions regarding used frameworks and libraries.

6.2.1 React.js as GUI Library

React.js serves as the main GUI library and had strong influence on our project structure.
It induces a top-down hierarchy of components which either contain their own state or
receive and modify state from parent components. The decision to use React was made
because of the following considerations:

• React.js is a mature GUI library with widespread adoption among web developers.

• We had successfully used React.js in other projects and we were familiar with its
capabilities and restrictions.

• React-three-fiber is a project that integrates the Three.js 3d rendering library into
the React component model and provides a React development experience without
restricting functionality.

The decision for React.js against alternative GUI libraries was therefore mostly based on
prior personal experience, but solidified by the perfect integration of Three.js. We did
not evaluate alternatives because we did not find it necessary.

In React, the typical way to share state between leaf components is to store it in the lowest
shared parent, causing the re-rendering of the entire sub-hierararchy on state change. We
therefore use zustand (https://github.com/pmndrs/zustand) for state management where
appropriate. This allows us to efficiently pass changed state in a publish-subscribe way
between components in different branches far down the component hierarchy without
causing the re-rendering of all parent components. This does not apply to the main
rendering loop. Any change in the input parameters results in the following rendering
sequence being executed (as depicted in Figure 6.1):

1. After the Scene Renderer has rendered a new frame, it passes the data to the Model
for inference.

2. The Scene Renderer receives back the activation data.

3. The Scene Renderer updates the Root’s state by calling setActivationData(newActivationData).

77

6. Implementation

4. The Root got its state modified and has to re-render itself and all childs.

Figure 6.1: Example of a typical way to pass data from one child component to another
child component in a different branch: The Scene Renderer component is in a different
branch than the Activation Renderer, their shared data (activationData) is stored in the
nearest root.

6.2.2 Material-UI

Figure 6.2: Examples of Material-UI components that we used: a) Select, b) Slider; c)
Button and Textfield; d) Checkbox; e) IconButtons (white) and Fab (blue); f) ListItem
used as header, with menu icon to symbolize collapsible menu.

Material-UI contains many pre-made customizable React components based on Material
Design. Using a component library such as Material-UI leads to a significant development
speed-up while keeping a consistent design. Examples of Material-UI components used
in our application are shown in Figure 6.2.

78

6.2. Perturber

Figure 6.3

The rounded corner style found in Material-UI leads to a more pleasing, “softer” visual
appearance. We adapt the remaining interface to follow this style by rounding the corners
on most otherwise sharply rectangular shapes, such as parent container boxes.

For the juxtaposition of activation maps to feature visualizations, we additionally use
rounded corners for grouping the activation map - feature visualization pair for each
neuron. As can be seen in Figure 6.3, without this design decision the visual association
of the pairs is much harder and slower to perceive.

6.2.3 TensorFlow.js

TensorFlow.js is a JavaScript machine learning library utilizing the GPU via WebGL
for efficient parallel execution of machine learning related operations. In contrast to
TensorFlow 1.x, it natively (and exclusively) runs in eager execution mode.

We use TensorFlow.js for all neural network inferencing operations and for gradient
ascent in adversarial attacks and feature visualizations. The CNN inferencing operations
represent the most time-consuming component of our application. We therefore optimize
the data flow to only run inference when necessary. This mostly affects the way we handle
the render loop, which constantly renders new frames. When the camera is stationary
and no parameters are updated, sending the frame data to the inferencer each time a
new frame arrives would be highly inefficient and would waste a lot of computation while
idling. We implemented a mechanism that requires each parameter-, camera- or model

79

6. Implementation

change to explicitly invalidate the current activation data, triggering the new activation
data to be computed for the next frame after the change only.

Another crucial implementation detail is the way the application handles receiving data
from the GPU. While executing TensorFlow.js operations, the data is stored in Tensor
objects. They are not directly readable by the client (non-GPU) side. To get data from
Tensors, one has the choice between asynchronous and synchronous data fetching. Calling
Tensor.data() returns a JavaScript Promise, which gets fulfilled with the data as function
parameter. Tensor.dataSync() returns the data directly as a TypedArray object.

We experimented with both methods and found the following advantages and disadvan-
tages for each:

• Synchronous data fetching blocks the GUI for the whole duration of the inference
operation which takes longer than 16 ms (required for smooth 60 Hz playback) in
most usage scenarios, sometimes exceeding 200ms and more (full inference with
logits for three models). This can lead to a very stuttery experience when changing
camera angle or moving parameter sliders. On the other hand, each input scene
change gets reflected in the displayed activation visualizations before the next
input scene update. The chronological order
input scene change -> inference -> visualization -> next input scene change
gets therefore preserved, which is important for the user to link the input scene to
the activation visualizations.

• Asynchronous data fetching frees the GUI from having to wait for the time-
consuming inference operations to finish. This leads to a more fluid GUI, always
being able to render at a high frame rate and thus providing a smooth experience.
The disadvantage is that the components displaying the model data often severely
lag behind the current input scene. This makes it hard for the user to judge if the
current parameter change is reflected in the activation visualization or if the user
still has to wait for a few tenths of a second for the changes to be displayed. In
the case of a MacBook Pro (with comparatively slow GPU), asynchronous data
fetching even lead to the activation visualization components not updating at all
during continuous paramter changes, requiring the user to pause the change to view
the updated visualization.

We chose the synchronous data fetching because the overall tradeoff seemed more sensible.
A slower user experience that consistently displays activations according to the input
image is preferable to a smoother user experience where the user can not be sure if the
current activation visualization reflects the input scene. Performance measurements will
be presented in Section 7.4.

For generating interactive feature visualizations we adopt the code from Lucid
Playground [SW19]. It is also based on TensorFlow.js [STA+19], which lacks an inverse

80

6.2. Perturber

fast Fourier transform (iFFT) operation that does exist in TensorFlow [AAB+15], neces-
sary for distributing the gradient well among all frequency bands. We use a Laplacian
pyramid [BA87] parameterization to approximate the behaviour otherwise achieved by
iFFT. Switching the naive parameterization toggle changes the parameterization between
a single pyramid layer and 5 pyramid layers. Empirically, 5 layers provide a good tradeoff
between speed and approximating a full Fourier parameterization.

6.2.4 Three.js

Three.js is a JavaScript library that greatly accelerates the usage of WebGL function-
ality by providing a more high level programming interface to rendering 3d scenes. We use
Three.js wrapped by the React.js renderer “react-three-fiber“(https://github.com/pmndrs/react-
three-fiber). This allows us to set up our 3d rendering in a declarative way and relieves
us from difficulties that can arise when one wants to integrate the Three.js render-loop
into a React component hierarchy. We exclusively use custom GLSL shaders for render-
ing background and foreground of the 3d scene, allowing us to take full control of the
rendering aspects. The foreground object in the 3d scene consists of two meshes that are
interpolated on the GPU according to a parameter passed as shader uniform.

For post-processing effects we also use custom GLSL shaders. We use the Effects Composer
from Three.js for the multi-pass post-processing pipeline and a custom render pass with
internal multi-pass rendering for the frequency decomposition post-processing effect.

For “Background Blur” as well as for “Texture Blur”, we use the textureLod GLSL function
to access a higher mip-mapping level (corresponding to lower-resolution versions of the
respective texture) on the GPU, which is much more efficient than a kernel-based box-
or Gaussian blur. We interpolate between two mip-mapping levels for any non-integer
parameter value.

81

CHAPTER 7
Results

In this chapter we will present the results of our work. We will present an extensive
case study with five expert participants as well as discoveries made by us while using
Perturber. Then we will show performance measurements.

7.1 Case Study

We conducted, in total, five case studies with expert researchers in deep learning. Four
of our five case studies were held as online video conferences where the participants
shared their screens during the session. In two cases, there was one researcher guiding
the participant while another researcher simultaneously transcribed the spoken words.
In two other cases there was only one researcher present who guided the participant with
the session being recorded and transcribed afterwards by speech recognition. All sessions
held as online video conferences lasted approximately one hour. The remaining session
was held by the respective participant on their own, and the observations were submitted
as written report. Two participants were involved in the design process as advisors, but
had never actively used the system. The application was adapted to feedback from the
first participant before the other four sessions were held.

The case study sessions started with a short introduction by the participant about
themselves, including their research interests. A short demonstration of the main features
by us followed. Then, the participants were asked to explore the application on their own
while describing their thoughts (“thinking aloud”). We asked the participants to share
their hypothesis about what response they expect to see from the network before trying
out particular features of Perturber. Questions about the user interface were allowed and
encouraged. During the last ten minutes of the session, the participants summarized their
impressions of Perturber, told us what they liked and what they did not like, and gave
us feedback about how the system could be improved for their needs. They were also

83

7. Results

asked to share their insights gained from using Perturber, and if they found something
out that they did not expect beforehand.

The participating researchers’ fields of expertise were all related to model robustness and
model interpretability. In particular, our participants self-described research topics were:

• P1: Understanding vision in humans and machines, with a special focus on Deep
Learning interpretability and feature visualizations.

• P2: On the interface between psychophysics and deep learning, in particular
understanding how object recognition differs between humans and machines.

• P3: Detection and interpretation of failure cases of computer vision models.

• P4: Learning more robust, safe, and verifiable machine learning models.

• P5: Designing interpretable deep learning models.

7.1.1 General Impressions and Feedback

The core concept of Perturber, interactively manipulating a scene while simultaneously
observing neural network activations, was appreciated by all participants. They liked the
immediate feedback, and some expressed surprise about the interactivity of the system.
P1, P2 and P3 explicitly stated that the tool is beneficial for quickly generating new
hypotheses. A particularly well appreciated feature was the morphing between cat and
dog. P2 wondered where humans would make the transition to perceiving the object as
“cat”. P5 liked morphing texture and shape of the foreground object independently. P1
was generally impressed by the amount of features, but would have been overwhelmed
by the interface without our guidance. After P1’s session, we made GUI adaptions,
separating the different visualization components more clearly. P2 liked that the classes
are visualized with example images, because many classes, especially various dog races,
might be unknown to the user. One participant suggested using Perturber as a teaching
tool, and to make people aware of how far away deep learning models are from human-
level intelligence. Apart from these general impressions, the participants had diverse
suggestions to extend and adapt the system for their interests.

A recurring suggestion was to diversify or enable customization of the scene. P1 would
have liked to use custom background images and foreground objects, while P3 would
have found it helpful to experiment with more background options. he mentioned as an
example an underwater scene, an unusual environment for the provided foreground models.
P3 also suggested a functionality to rotate the background, and to experiment with
more 3d models than the ones provided. Following these suggestions, we implemented
functionality to select custom background images and 3d models from the user’s local disk.
Multiple participants expressed an interest for automatization features. P1 would have
found it useful to extract meaningful circuits [CCG+20] automatically. She was aware
that this was far beyond the scope of our tool. P2 stated that “at some point you’d want

84

7.1. Case Study

to test it on hundreds or thousands of images”, and P4 stated that a systematic evaluation
of how various aspects of input perturbations affect different models’ decisions would be
beneficial, and that he would like to have a backend with the ability of performing a grid
search.

Multiple participants commented on the activation / feature visualization area. While
P2 stated that he was generally not knowledgeable about feature visualizations, P1
suggested dataset examples for visualizing intermediate neurons, and P3 would have
liked to see multiple feature visualizations for each neuron to highlight their nature of
responding strongly to diverse inputs (see “diversity” in Olah et al. 2017 [OMS17]).
P1 liked the ability to scrub through the feature visualizations for various fine-tuning
steps. She was surprised that feature visualizations generated on-the-fly for the “Edited
Model” looked different compared to the pre-calculated feature visualizations, before we
explained to them that there were slight implementation differences. P1 also stated that
the comparatively slow generation of feature visualizations for the “Edited Model” was
not distracting and gave them time to observe other visualizations in the mean time.
P3 was surprised that feature visualizations for the adversarially trained model look
more “cartoony” and found them easier to interpret because of their lack of texture.
He was also surprised by his observation that some feature visualizations from the SIN
trained model look more textured than the corresponding feature visualizations from the
standard model.

7.1.2 Detailed Observations

During our sessions, the participants were asked to come up with hypotheses about model
behaviour in response to input perturbations and to test them while simultaneously
explaining their observations. In the following paragraphs, we will summarize these
observations, grouped by the different types of input perturbations.

Camera transformations. P2 did not find it surprising that camera roll breaks the
adversarially trained model, specifically a dog getting confused for a hen. He had recently
done an experiment where he had observed that adversarially trained models were more
sensitive to large scale transforms. Similarly, P4 observed that the adversarially trained
model tends to misclassify the scene more often upon input viewpoint and structural
variations than the standard trained model. P5 also observed that the adversarially
trained model’s classification output changes more than the standard trained model’s
classification output while rotating the camera. On the other hand, the adversarially
trained model is less sensitive to the object’s distance to the viewpoint, according to P4’s
observations.

Scene perturbations. P3 observed that a “Dog Relevant” feature map in Layer
“mixed4d” did not peak at the full “Dog” position of the object morphing slider between
“Dog” and “Cat”, but at a value of approximately 5% “Cat”. He also found that a blurred
background generally makes the adversarially trained model behave less consistent,
and therefore hypothesized that an adversarially trained model must rely more on

85

7. Results

the background for making its prediction. We were able to confirm this hypothesis
quantitatively, as shown in Section 7.3.2. A similar observation was made by P4, who
found that perturbing the background image significantly alters the decisions made by
the adversarially trained model, while the effect is less apparent in the standard trained
model.

Post-processing perturbations. With post-processing perturbations, the expectations
of participants who tried this feature were diverging. P2 was surprised that the SIN
trained model held up well while blurring the image. He had hypothesized that it needs
sharp lines because stylized images tend to contain relatively sharp, paint-stroke like
structures. Similarly, P3 would have expected the SIN trained model to be more affected
by blurring the image. On the other hand, P1 was surprised by the strong influence of
frequency decomposition operations on the class prediction.

Adversarial attacks. Two participants made observations while using the adversarial
attack module. P2 noticed that attacking the adversarially trained model produces an
image that significantly differs from the original, while attacking the other models merely
added high-frequency details. P5 focused on feature map activations during adversarial
attacks. He noticed that activations in early layers changed very little compared to
later layers by the attack. Also, he performed a targeted attack towards “badger” on
the standard model with a car scene as original input. P5 then observed an increasing
activation in previously non-activated fur-detecting neurons.

Combined perturbations. P2 hypothesized that there is an interaction between
background and camera rotation. He tested the adversarially and standard trained
models with a dog in front of the “street“ background. The adversarially trained model
was very brittle regarding small rotations with this unusual background, while the
standard model held up better - an observation that supported their hypothesis. P3
found it interesting that the adversarially trained model confidently classified a close-up
of the de-textured dog head as a hammerhead, and that a small rotation leads to very
different classification scores. He did not further explore this behaviour. P3 also observed
that with texture on the model, the SIN and adversarially trained models are more
consistent under rotation when viewing a close-up of the dog’s ears than without texture.
He concluded that texture makes the classification more consistent.

Pruning and mixing. P5 was the only participant to use the pruning and mixing
functionalities. When He pruned filter kernels by their magnitude in Layer “mixed5a”, he
was surprised about the strong effect that low-magnitude kernels had on the classification
result, which was against their original intuition. While mixing weights from the standard
model and the adversarially trained model layer by layer, he noticed that some layer
combinations were more compatible (resulted in correct classfications) than others.
Specifically, using early layers’ weights up to “mixed3a” from one model and the other
layers’ weights from the second model worked much better than he had anticipated.

86

7.2. Our Findings

7.2 Our Findings

During the development of Perturber, we often made interesting discoveries while testing
the application and its latest features ourselves. One of these findings stands out among
the others, and to the best of our knowledge has not been published before. We made the
following observation while mixing layers from the standard and from the adversarially
trained model with the weight editing module as described in Section 5.4. We noticed
that an adversarial attack on a model using early layer weights from the adversarially
trained model, for instance up to including “mixed3a”, in combination with weights
from the standard trained model for the rest of the layers, leads to an image that shows
remarkable low frequency structure. The appearance of the attack more closely resembled
an attack generated for an adversarially trained model than for a standard trained model,
as shown in Figure 7.1.

As Tsipras et al. have shown [TSE+19], attacks on adversarially trained models generally
exhibit low frequency structure, which led us to suspect that our mixed model might have
improved robustness just through the use of early layer weights from an adversarially
trained model. This could imply a cheaper method to strengthen a model’s adversarial
robustness than full adversarial training, by re-using adversarially pre-trained layers.

We subsequently conducted an experiment where we fixed either just the first or both, the
first and the second group (out of four) of residual blocks [HZRS16] of an adversarially
trained ResNet 18 model, and then trained the remaining weights on ImageNet classi-
fication in a standard, non-adversarial way. We compared both obtained models to a
standard-trained ResNet 18 under varying-strength adversarial attacks on the ImageNet
validation set. We found that the models with the fixed early layer weights from the
adversarially trained model consistently outperformed the standard model under all
attack magnitudes greater than zero. The model with just the first group’s weights fixed
even outperformed the standard trained model. The results of our measurements are
shown in Figure 7.2.

7.3 Quantitative Measurements for Case Studies

To find out if Perturber can ideed be useful for generating hypotheses that can withstand
quantitative evaluation, we performed quantitative measurements to verify some of the
discoveries by users described in Section 7.1. To test the generalizability of the users’
observations, we performed these measurements using different models than the ones
used in the online tool. We used the pre-trained ResNet 50 from the torchvision library
of PyTorch [PGM+19] as standard model. To verify hypotheses that involved different
behaviour between standard and adversarially trained models, we used weights of an
adversarially trained version of the same ResNet 50 from the robustness library [EIS+19]
(ResNet 50 ImageNet ϵ 3/255 under L2-norm).

87

7. Results

Figure 7.1: Original image (top left); Standard model adversarial attack (top center);
Mixed model adversarial attacks with successively more layers with weights from the
adversarially trained model: Up to “conv2d1” (top right); Up to “mixed3a” (bottom left);
Up to “mixed4c” (bottom center); All layers (bottom right). All attacks are untargeted.

7.3.1 Are Adversarially Trained Models More Sensitive to Viewpoint
Changes?

First, we verified if the adversarially trained model is more affected by camera transfor-
mations than the standard model, as reported by P2, P4, and P5. Specifically, we tested
behaviour under camera rotation. We created a synthetic dataset by rendering the four
3d models available in Perturber from seven angles around the yaw axis ({-70◦, -46.7◦,
-23.3◦, 0◦, 23.3◦, 46.7◦, 70◦}, as shown in Figure 7.3 (b)), two pitch angles ({0◦, -16.7◦}),
and two distances of the camera to the object, as shown in Figure 7.3 (a), resulting in
28 views for each of the four 3d models. The generated data set is publicly available at
https://github.com/stefsietz/perturber.

To measure how much the predictions vary between camera angles, we defined a prototype
view with a yaw angle of -23.3◦, serving as a reference which is neither overly frontal or
overly from the side. We rendered each of the four models from this yaw angle and with
each of the four pitch / distance combinations, as shown for two models in Figure 7.3 (a).
For each of the 16 resulting prototypes, the logits of the top-10 classes served as “ground
truth”. We then compared the logits of the other views to the top-10 prototype logits. For

88

7.3. Quantitative Measurements for Case Studies

Top5

0,00

0,25

0,50

0,75

1,00

eps 0 eps 0,1 eps 0,5 eps 1 eps 2 eps 5

Adv-pre -> group 1
Adv-pre -> group 0
Std

Figure 7.2: Top-5 error rates on the ImageNet validation set for a standard ResNet 18
model (yellow) and two ResNet 18 models with adversarially pre-trained weights up to
including group 0 (orange) and group 1 (blue).

every yaw variation, we computed the Euclidean distance of the logit values of the top-10
ground truth classes vector between each yaw-angle varied image and the prototype view.
We normalized the Euclidean distance of the top 10-logits by the standard deviation of
the total logit vector and averaged the score per object.

Formally, this “fluctuation score” fp can be expressed in the following way:

dy = l∗c∗
10

− lyc∗
10

, (7.1)

fp =
∑

y

√
dy · dy

std(l∗1000) , (7.2)

where c∗
10 are the top 10 predictions of the prototype view, lyc∗

10
are their logits from yaw

variation y, l∗c∗
10

are their logits from the prototype view itself and l∗1000 is the total logit
vector of the prototype view.

The resulting fluctuation scores are considerably higher for the adversarially trained
model except for the race car object (Figure 7.4). This is strong evidence that the

89

7. Results

(a)

(b)

Figure 7.3: Four prototype views for combinations of slightly varied camera pitch angles
and camera distances, shown for the dog and fire truck models (a). For each of those
prototype views, we generate six additional yaw angle variations. The bottom image
(b) shows those variations for the dog view outlined in white, which corresponds to the
second view from right in (a).

adversarially trained model is indeed more vulnerable to yaw rotations of the main scene
object.

7.3.2 Are Adversarially Trained Models More Sensitive to Background
Changes?

Our second quantitative measurement investigated the adversarially trained model’s
sensitivity to background changes, which was observed by P2 and P5. We performed the
Background Challenge by Xiao et al. [XEIM20], where images with replaced backgrounds
are used to test the background’s role as a feature for the model’s classification result. In
this testing scenario, random guessing would result in 11.1% accuracy [XEIM20]. The
adversarially trained model only achieved an accuracy of 12.3%, barely exceeding random
guessing, while the standard model achieved 22.3% accuracy. This result verifies that the

90

7.4. Performance Measurements

dog cat firetruck racecar
0

2

4

6

8

10
Fl

uc
tu

at
io

n
Sc

or
es

std. trained
adv. trained

Figure 7.4: Mean yaw fluctuation scores for the standard model and the adversarially
trained model for the four 3d models. Error bars represent standard deviation.

adversarially trained model is more dependant on backgrounds than the standard model.

7.4 Performance Measurements
While designing Perturber, instantaneous visual feedback was always a top priority.
We continuously assessed integrated visualizations regarding interactivity and removed
several of those visualizations after they failed to meet this requirement. Examples of
visualizations that we had implemented but found to be too slow for our instantaneous
feedback requirement are Grad-CAM [SCD+17] and a visualization of the class probability
gradient with respect to the input image.

We measured Perturbers performance by recording framerates on two representative
notebook types and with various visualization configurations. The notebooks used for
our performance benchmarks were a MacBook Pro 13" 2018 with Intel Iris Plus Graphics
655 (MBP) and a Gigabyte AORUS 15G Gaming Notebook with an NVIDIA GeForce
GTX 2080 Super GPU (AORUS). Figure 7.5 shows the recorded framerates. Clearly, the
GPU has a strong influence on the frame rate, but also the enabled visualizations have a
significant impact. The prediction view (Section 5.5) requires a forward pass through the
whole CNN, while the neuron activation view (Section 5.3) only requires inference up
to the selected layer. Notably, the AORUS notebook, while having a significantly faster
GPU than the MBP, only has a slightly higher framerate than the MBP when the former
shows the prediction view and the later does not.

91

7. Results

NAV [MBP] NAV + PV [MBP] NAV [AORUS] NAV + PV [AORUS]
0

10

20

30

40

FP
S

1 Model
2 Models

Figure 7.5: Performance benchmarks for four different output configurations, measured
on two machines (MBP or AORUS): neuron activation view (NAV) only, or neuron
activation view in combination with prediction view (NAV+PV) visualized for one or
two visualized models concurrently.

92

CHAPTER 8
Conclusion and Future Work

In this final chapter, we will briefly summarize and recapitulate the presented work. Then
we will look at shortcomings of the current version of our application, and at potential
future work that might address these shortcomings.

8.1 Summary

In our introduction, we presented the issues of interpretability and robustness of neural
networks. What features do neurons respond to? How are features different between
standard- and robustly trained models? How can we visualize them? We explained
state of the art feature visualization methods, the concept of adversarial examples and
their relationship. We highlighted the connection between adversarial examples and
the strong reliance of standard CNNs on high frequency features. While adversarial
attacks on standard trained models are mostly high-frequency perturbations, attacking an
adversarially trained model leads to globally structural changes, as Madry et al. showed
[MMS+18]. This highly interesting phenomenon motivated our first hypothesis:

H1: Feature visualization can help to understand the difference of learned
features between standard and robust training.

In Chapter 4, we then presented an extensive collection of experiments designed to verify
H1. We proposed three initial questions in Section 4.1 and we subsequently answered
them with feature visualization techniques.

• When during training do feature detectors diverge in standard versus adversarial
training? In Section 4.1.1, we showed that feature detectors diverge right from the
beginning, by comparing various adversarial training runs with a standard training
run, all other hyper-parameters being fixed.

93

8. Conclusion and Future Work

• How do feature detectors develop during training in general, when viewed through
the lens of feature visualization? We confirmed visually that early feature detectors
converge earlier than later feature detectors. This behaviour has previously been
shown quantitatively by Raghu et al. [RGYSD17]. By visualizing this phenomenon,
we give researchers the ability to build intuition about feature convergence during
the CNN training process. Additionally, the fact that feature convergence during
training is observable through feature visualizations, strengthens their validity in
revealing the details of neuron-activating patterns.

• What is the influence of the perturbation epsilon? Are there any feature visualization
characteristics that correlate with perturbation epsilon? To answer this question, we
trained eight models adversarially, varying the epsilon value between zero (standard
training) and 1.0. We then generated feature visualizations for each model at
various layers and visually compared them against each other. We found a clear
correlation between low image frequencies and epsilon value, although with a visible
saturation of low frequencies at an epsilon value of 0.33.

After these experiments, in which we investigated the difference between standard and
adversarial training from scratch, we looked at adversarial fine-tuning. By generating
feature visualizations for checkpoints during an adversarial fine-tuning process, we were
able to observe the features changing towards a representation with a stronger low-
frequency focus. We compared these feature transitions to their counterparts derived
from fine-tuning on Stylized ImageNet, which didn’t exhibit such a striking transformation.
This comparison highlighted the unique characteristics of adversarial training.

The formulation of H1 makes a clear confirmation or rejection of the hypothesis hard.
We certainly have not fully understood the difference between standard and adversarial
training, therefore claiming that feature visualization can help in doing so is not possible.
Still, we have shed light onto some important aspects of their difference. Particularly the
comparison of feature visualizations between adversarial fine-tuning and Stylized ImageNet
fine-tuning highlights the distinctive role of adversarial training: Even though training
on Stylized ImageNet alleviates the bias towards texture features compared to training
on standard ImageNet, our results indicate that the obtained feature representation still
exhibits similar high-frequency dependence.

Our second hypothesis H2 was targeted at a more general notion of robustness.

H2: An application, that allows interactively applying and combining a large
palette of image perturbations while inspecting intermediate- and output
activations of a single or multiple CNNs, can help to investigate the CNNs
robustness.

We designed and implemented such an application, incorporating feedback from deep
learning and visualization experts. We integrated models and feature visualizations
which had been generated during our preliminary experiments, allowing the meticulous
inspection of multiple checkpoints from adversarial- and Stylized ImageNet fine-tuning.

94

8.2. Limitations and Future Work

The visual analytics application enables the user to interactively perturb the input of a
CNN by manipulating a 3d scene. Apart from 3d scene parameters such as camera view,
object morphing, texture- and lighting influence, our application provides numerous post
processing effects inspired by recent work on model robustness. Additionally, we enable
users to perturb the model itself, by mixing weights from two models on a layer-by-layer
basis, and by pruning weight kernels by channel magnitude. Notably, the visual analytics
application does all heavy computation on the client side and therefore can be served as
a web application to millions of users without costly server infrastructure.

To verify H2, we conducted five expert case studies which we presented in Section 7.1.
The results from these case studies consist of a large variety of anecdotal observations
which we believe can be beneficial for intuition-building. More importantly, they contain
two observations which we were able to verify quantitatively. In combination with our
own observations made during interactive weight mixing experiments, they provide strong
evidence in favor of H2.

8.2 Limitations and Future Work

In the following paragraphs we will discuss various limitations of our work. Some of
them have been observed and described by our case study participants, some of them
are our own observations. As our visual analytics application has been optimized for
usability and minimum complexity, we even describe some potential features here that
were previously implemented but then omitted for reducing complexity. After looking at
limitations and potential improvements of our visual analytics application Perturber, we
will briefly discuss future work that can extend experiments and further solidify results
that have been presented in this thesis.

A major limitation of our visual analytics application is the tight integration of the
Inception V1 architecture. Extending the application to other models is possible but
requires several hours of manual work. We had integrated ResNet 18 during the develop-
ment but switched to Inception V1 because of the large amount of feature categorization
already done by Olah et al. [OCS+20], as part of the Circuits project. Omitting the
activation / feature visualization module would greatly reduce the effort necessary to
adapt the application to a new model. The feature visualizations also require the majority
of the computational pre-processing budget, as they are generated for all neurons at
multiple training checkpoints. Another possibility would therefore be to restrict the model
comparison to fully trained models instead of providing multiple training checkpoints.
In fact, this would be the only way to enable the proper integration of pre-trained
models, where the user does not have the opportunity to save arbitrary checkpoints
during training. Even though the case study participants generally liked the activation
/ feature visualization model, we believe that it is of less importance than the output
module, and that the benefits of an interface without it could potentially outweigh its
drawbacks.

95

8. Conclusion and Future Work

In summary, the main benefits of a version of Perturber without multiple checkpoints,
and without the activation / feature visualization module would include:

• Relatively easy integration of arbitrary classifier models - even non CNN architec-
tures.

• Direct comparison of models with different architecture.

The main drawbacks would be:

• No direct juxtaposition of hidden-layer activations from multiple models.

• No feature visualizations.

• No weight mixing capabilities.

Such an application might lack some of the functionality present in our work, but it could
enable a more diverse, more general investigation and comparison of model robustness.

Several of our case study participants requested a form of systematic search over the
perturbation parameters. This would certainly be possible to integrate in some form,
although searching over more than two parameters would be prohibitively slow. During
Perturber’s development, we experimented with a two dimensional grid search with
selectable resolution and perturbation parameters. This module sequentially generated
images for the respective parameter combinations and recorded the activations for all
units of a layer. It then was able to display them in a similar way to how OpenAI
Micropscope’s “synthetic tuning curves” display unit responses - the input images were
arranged in a grid for each unit, and each input image was saturated according to the
response it caused in the respective unit. We decided to omit this feature in the final
interface design for visual clarity and improved user experience. Integrating it would
require an additional row of square tuning curve images beneath the feature visualizations
for each neuron, as well as a menu to configure and initiate the grid search. As mentioned
in Section 3.2, 3DB [LSI+21] is a framework that facilitates such a systematic search.

Another form of automatic search requested by participants was to compute numer-
ical partial derivatives of the current output classification score with respect to the
perturbation parameters. This would require two additional image generations and
model evaluations per perturbation parameter for which the partial derivative has to
be computed. The numerical differentiation step size would be a hyperparameter to be
determined for each parameter. While we did not explore the feasibility of implementing
this feature in our application, we can certainly see a lot of value for the user to have
this information displayed at each parameter control, to help choose which parameters to
change.

96

8.2. Limitations and Future Work

One of our results presented in Section 7.2 indicates that fixed, pre-trained early layers
from an adversarially trained model provide a non-trivial improvement of adversarial
robustness when training a standard model. This finding might help in the development
of training optimizations for adversarial training, leading to some degree of adversarial
robustness at a massively reduced training cost. Our experiments were restricted to
the ResNet 18 architecture and two different transfer-learning configurations. Such a
small number of experiments can only serve as anecdotal evidence and therefore further
investigation of this phenomenon would be desirable.

To conclude, let us very briefly reiterate the main contributions of the presented work:

• We collected evidence for a causal connection between a model’s behaviour and the
visual appearance of their feature visualizations.

• We developed a visual analytics application allowing for interactive model probing
under various scene and image perturbations in coordination with domain experts.

• We then conducted case studies with five experts, showing that novel observations
can be made by using our application.

• We tested and confirmed two of the experts’ observations, as well as one of our own
observations, quantitatively.

We firmly believe that our visual analytics application serves as a valuable proof of
concept on the intersection between visual analytics and neural network interpretability
with respect to robustness. The described limitations suggest potential for further
improvement with respect to automatization, adaptability and user experience. The core
concept of interactively manipulating and perturbing a scene, serving as an input to a
model under inspection, has been shown to be useful.

We further believe that Perturber, once published on the web, will serve many researchers
and students as a useful playground for experimentation and intuition building. Per-
turber’s unique and unusual ability among visual analytics tools is to perform expensive
computations on the client’s GPU. Therefore it is inexpensive to deploy on the web
for wide access. We hope that this property will motivate open source contributors to
improve the input scene of Perturber, so that it can benefit from ongoing and future
developments in photorealistic rendering.

97

Bibliography

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[ACW18] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial examples.
In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, July 2018.

[AZL20] Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial
training performs robust deep learning. arXiv preprint arXiv:2005.10190,
2020.

[BA87] Peter J. Burt and Edward H. Adelson. The Laplacian Pyramid as a Compact
Image Code. In Martin A. Fischler and Oscar Firschein, editors, Readings in
Computer Vision, pages 671–679. Morgan Kaufmann, San Francisco (CA),
1987.

[BG06] Daniel A Butts and Mark S Goldman. Tuning curves, neuronal variability,
and sensory coding. PLoS biology, 4(4):e92, 2006.

[BZS+20] Judy Borowski, Roland Simon Zimmermann, Judith Schepers, Robert
Geirhos, Thomas SA Wallis, Matthias Bethge, and Wieland Brendel. Ex-
emplary natural images explain cnn activations better than state-of-the-art
feature visualization. In International Conference on Learning Representa-
tions, 2020.

99

[CAS+19] Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris
Olah. Activation Atlas. Distill, 2019.

[CCG+20] Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov,
and Ludwig Schubert. Thread: Circuits. Distill, 5(3):e24, March 2020.

[CGC+20] Nick Cammarata, Gabriel Goh, Shan Carter, Ludwig Schubert, Michael
Petrov, and Chris Olah. Curve detectors. Distill, 2020.

[CPCS20] D. Cashman, A. Perer, R. Chang, and H. Strobelt. Ablate, Variate, and
Contemplate: Visual Analytics for Discovering Neural Architectures. IEEE
Transactions on Visualization and Computer Graphics, 26(1):863–873, Jan-
uary 2020.

[CW17] Nicholas Carlini and David Wagner. Towards evaluating the robustness of
neural networks. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 39–57, Los Alamitos, CA, USA, may 2017.

[Cyb89] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

[CZM+19] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and
Quoc V Le. Autoaugment: Learning augmentation strategies from data. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 113–123, 2019.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages 248–255. IEEE, 2009.

[DT17] Terrance DeVries and Graham W Taylor. Improved regularization of con-
volutional neural networks with cutout. arXiv preprint arXiv:1708.04552,
2017.

[EBCV09] Dumitru Erhan, Y. Bengio, Aaron Courville, and Pascal Vincent. Visualizing
Higher-Layer Features of a Deep Network. Technical Report, Univeristé de
Montréal, January 2009.

[EIMX20] Logan Engstrom, Andrew Ilyas, Aleksander Madry, and Kai Xiao.
Noise or signal: The role of backgrounds in image classification.
https://gradientscience.org/background/, 2020. (Accessed on
12/02/2021).

[EIS+19] Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and
Dimitris Tsipras. Robustness (Python Library). https://github.com/
MadryLab/robustness, 2019. (Accessed on 10/12/2020).

100

https://gradientscience.org/background/
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness

[GEB16] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style
transfer using convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2414–2423,
2016.

[GH19] Justin Gilmer and Dan Hendrycks. A discussion of ’adversarial examples
are not bugs, they are features’: Adversarial example researchers need to
expand what is meant by ’robustness’. Distill, 2019.

[GMP+17] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes,
and Patrick McDaniel. On the (statistical) detection of adversarial examples.
arXiv preprint arXiv:1702.06280, 2017.

[GPAM+14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Genera-
tive adversarial nets. In Proceedings of the 27th International Conference on
Neural Information Processing Systems, volume 2, pages 2672–2680, 2014.

[GRM+18] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge,
Felix A Wichmann, and Wieland Brendel. Imagenet-trained cnns are biased
towards texture; increasing shape bias improves accuracy and robustness.
In International Conference on Learning Representations, 2018.

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, Conference Track
Proceedings, 2015.

[Har15] Adam W. Harley. An Interactive Node-Link Visualization of Convolutional
Neural Networks. In George Bebis, Richard Boyle, Bahram Parvin, Darko
Koracin, Ioannis Pavlidis, Rogerio Feris, Tim McGraw, Mark Elendt, Regis
Kopper, Eric Ragan, Zhao Ye, and Gunther Weber, editors, Advances in
Visual Computing, pages 867–877. Springer International Publishing, Cham,
2015. Series Title: Lecture Notes in Computer Science.

[HBM+21] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang,
Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al.
The many faces of robustness: A critical analysis of out-of-distribution
generalization. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 8340–8349, 2021.

[HD18] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network
robustness to common corruptions and perturbations. In International
Conference on Learning Representations, 2018.

[HKPC19] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual Analytics in
Deep Learning: An Interrogative Survey for the Next Frontiers. IEEE

101

Transactions on Visualization and Computer Graphics, 25(8):2674–2693,
August 2019.

[HMC+20] Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer,
and Balaji Lakshminarayanan. AugMix: A simple data processing method
to improve robustness and uncertainty. Proceedings of the International
Conference on Learning Representations, 2020.

[HPRPC20] Fred Hohman, Haekyu Park, Caleb Robinson, and Duen Horng Polo Chau.
Summit: Scaling Deep Learning Interpretability by Visualizing Activation
and Attribution Summarizations. IEEE Transactions on Visualization and
Computer Graphics, 26(1):1096–1106, January 2020.

[HZB+21] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn
Song. Natural adversarial examples. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 15262–
15271, 2021.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE International Conference on Computer Vision,
pages 1026–1034, 2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–778, 2016.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International
conference on machine learning, pages 448–456, 2015.

[JB17] Jason Jo and Yoshua Bengio. Measuring the tendency of CNNs to Learn
Surface Statistical Regularities. arXiv:1711.11561, November 2017. arXiv:
1711.11561.

[Kha20] Vaibhav Khandelwal. The architecture and implemen-
tation of vgg-16. https://pub.towardsai.net/
the-architecture-and-implementation-of-vgg-16-b050e5a5920b,
2020.

[KPN16] Josua Krause, Adam Perer, and Kenney Ng. Interacting with predictions:
Visual inspection of black-box machine learning models. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, pages
5686–5697, 2016.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,

102

https://pub.towardsai.net/the-architecture-and-implementation-of-vgg-16-b050e5a5920b
https://pub.towardsai.net/the-architecture-and-implementation-of-vgg-16-b050e5a5920b

L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc., 2012.

[KTC+19] M. Kahng, N. Thorat, D. H. Chau, F. B. Viégas, and M. Wattenberg. GAN
Lab: Understanding Complex Deep Generative Models using Interactive
Visual Experimentation. IEEE Transactions on Visualization and Computer
Graphics, 25(1):310–320, January 2019.

[LBM+16] Sebastian Lapuschkin, Alexander Binder, Grégoire Montavon, Klaus-Robert
Müller, and Wojciech Samek. The LRP Toolbox for Artificial Neural
Networks. Journal of Machine Learning Research, 17(114):1–5, 2016.

[LCJ+19] Dongyu Liu, Weiwei Cui, Kai Jin, Yuxiao Guo, and Huamin Qu. Deep-
Tracker: Visualizing the Training Process of Convolutional Neural Networks.
ACM Transactions on Intelligent Systems and Technology, 10(1):1–25, Jan-
uary 2019.

[LHA+20] Mathias Lechner, Ramin Hasani, Alexander Amini, Thomas A Henzinger,
Daniela Rus, and Radu Grosu. Neural circuit policies enabling auditable
autonomy. Nature Machine Intelligence, 2(10):642–652, 2020.

[LLL+18] Shusen Liu, Zhimin Li, Tao Li, Vivek Srikumar, Valerio Pascucci, and
Peer-Timo Bremer. Nlize: A perturbation-driven visual interrogation tool
for analyzing and interpreting natural language inference models. IEEE
Transactions on Visualization and Computer Graphics, 25(1):651–660, 2018.

[LLS+18] M. Liu, S. Liu, H. Su, K. Cao, and J. Zhu. Analyzing the Noise Robustness
of Deep Neural Networks. In 2018 IEEE Conference on Visual Analytics
Science and Technology, pages 60–71, October 2018.

[LLUZ16] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding
the effective receptive field in deep convolutional neural networks. In
Proceedings of the 30th International Conference on Neural Information
Processing Systems, pages 4905–4913, 2016.

[LSI+21] Guillaume Leclerc, Hadi Salman, Andrew Ilyas, Sai Vemprala, Logan En-
gstrom, Vibhav Vineet, Kai Xiao, Pengchuan Zhang, Shibani Santurkar,
Greg Yang, Ashish Kapoor, and Aleksander Madry. 3db: A framework for
debugging computer vision models. In Arxiv preprint arXiv:2106.03805,
2021.

[MFH+20] Y. Ma, A. Fan, J. He, A. R. Nelakurthi, and R. Maciejewski. A Visual
Analytics Framework for Explaining and Diagnosing Transfer Learning
Processes. IEEE Transactions on Visualization and Computer Graphics,
27(2):1385–1395, 2020.

103

[Mil95] George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):39–41, November 1995.

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks. In International Conference on Learning Representations, 2018.

[MS18] Alexander Madry and Ludwig Schmidt. A brief introduction to adversarial
examples. http://gradientscience.org/intro_adversarial/, 2018. (Accessed
on 02/12/2020).

[MV15] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image
representations by inverting them. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 5188–5196, 2015.

[NCB+17] Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason
Yosinski. Plug & Play Generative Networks: Conditional Iterative Gener-
ation of Images in Latent Space. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3510–3520, July 2017.

[NDY+16] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff
Clune. Synthesizing the preferred inputs for neurons in neural networks
via deep generator networks. Advances in Neural Information Processing
Systems, 29:3387–3395, 2016.

[NQ17] Andrew P Norton and Yanjun Qi. Adversarial-Playground: A visualization
suite showing how adversarial examples fool deep learning. In 2017 IEEE
Symposium on Visualization for Cyber Security (VizSec), pages 1–4, 2017.

[NYC15] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images. In
2015 IEEE Conference on Computer Vision and Pattern Recognition, pages
427–436, 2015.

[OBLS14] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and Transferring
Mid-level Image Representations Using Convolutional Neural Networks. In
2014 IEEE Conference on Computer Vision and Pattern Recognition, pages
1717–1724, June 2014.

[OCS+20] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael
Petrov, and Shan Carter. Zoom in: An introduction to circuits. Distill,
2020.

[OMS17] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature Visual-
ization. Distill, 2(11):e7, November 2017.

[Ope] OpenAI Microscope. https://microscope.openai.com/models.
(Accessed on 10/12/2020).

104

https://microscope.openai.com/models

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

[PHVG+18] Nicola Pezzotti, Thomas Höllt, Jan Van Gemert, Boudewijn P.F. Lelieveldt,
Elmar Eisemann, and Anna Vilanova. DeepEyes: Progressive Visual Analyt-
ics for Designing Deep Neural Networks. IEEE Transactions on Visualization
and Computer Graphics, 24(1):98–108, January 2018.

[PMJ+16] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay
Celik, and Ananthram Swami. The limitations of deep learning in adversarial
settings. In 2016 IEEE European symposium on security and privacy, pages
372–387, 2016.

[PMW+16] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a defense to adversarial perturbations against deep
neural networks. In 2016 IEEE Symposium on Security and Privacy, pages
582–597, 2016.

[RGYSD17] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein.
Svcca: singular vector canonical correlation analysis for deep learning
dynamics and interpretability. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 6078–6087,
2017.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California
Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386,
1958.

[RSG16] Marco Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should I Trust
You?”: Explaining the Predictions of Any Classifier. In Proceedings of
the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Demonstrations, pages 97–101, June 2016.

[RZT18] Amir Rosenfeld, Richard Zemel, and John K. Tsotsos. The Elephant in the
Room. arXiv:1808.03305 [cs], August 2018. arXiv: 1808.03305.

105

[SCD+17] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra.
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization. In 2017 IEEE International Conference on Computer Vision,
pages 618–626, October 2017.

[SCS+17] Daniel Smilkov, Shan Carter, D. Sculley, Fernanda B. Viégas, and Mar-
tin Wattenberg. Direct-Manipulation Visualization of Deep Networks.
arXiv:1708.03788, August 2017.

[SKC+20] Róbert Szabó, Dániel Katona, Márton Csillag, Adrián Csiszárik, and Dániel
Varga. Visualizing Transfer Learning. arXiv:2007.07628 [cs], July 2020.
arXiv: 2007.07628.

[SLB+21] Stefan Sietzen, Mathias Lechner, Judy Borowski, Ramin Hasani, and
Manuela Waldner. Interactive analysis of cnn robustness. Computer Graph-
ics Forum (Proceedings of Pacific Graphics 2021), 40(7):253–264, 2021.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[SSSEA20] T. Spinner, U. Schlegel, H. Schäfer, and M. El-Assady. explAIner: A Visual
Analytics Framework for Interactive and Explainable Machine Learning.
IEEE Transactions on Visualization and Computer Graphics, 26(1):1064–
1074, January 2020.

[STA+19] Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann Yuan, Nick Kreeger,
Ping Yu, Kangyi Zhang, Shanqing Cai, Eric Nielsen, David Soergel, Stan
Bileschi, Michael Terry, Charles Nicholson, Sandeep N. Gupta, Sarah Sira-
juddin, D. Sculley, Rajat Monga, Greg Corrado, Fernanda B. Viégas, and
Martin Wattenberg. TensorFlow.js: Machine Learning for the Web and
Beyond. arXiv:1901.05350 [cs], February 2019. arXiv: 1901.05350.

[STK+17] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wat-
tenberg. SmoothGrad: removing noise by adding noise. arXiv:1706.03825
[cs, stat], June 2017. arXiv: 1706.03825.

[STY17] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution
for deep networks. In International Conference on Machine Learning, pages
3319–3328, 2017.

[SVZ14] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and saliency
maps. In Workshop at International Conference on Learning Representations,
2014.

106

[SW19] Stefan Sietzen and Manuela Waldner. Interactive feature visualization in the
browser. Proceedings of the Workshop on Visualization for AI explainability,
2019.

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In International Conference on Learning
Representations, 2015.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. In 2nd International Conference on Learning Representations,
2014.

[TSE+19] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner,
and Aleksander Madry. Robustness may be at odds with accuracy. In
International Conference on Learning Representations, 2019.

[W+16] Yuxin Wu et al. Tensorpack. https://github.com/tensorpack/,
2016. (Accessed on 01/06/2020).

[WPB+20] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, and
J. Wilson. The What-If Tool: Interactive Probing of Machine Learning
Models. IEEE Transactions on Visualization and Computer Graphics,
26(1):56–65, January 2020.

[WSW+18] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané, D. Fritz,
D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualizing Dataflow
Graphs of Deep Learning Models in TensorFlow. IEEE Transactions on
Visualization and Computer Graphics, 24(1):1–12, January 2018.

[WTS+20a] Zijie J. Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das,
Fred Hohman, Minsuk Kahng, and Duen Horng (Polo) Chau. Bluff: Inter-
actively deciphering adversarial attacks on deep neural networks. In IEEE
Visualization Conference, 2020.

[WTS+20b] Zijie J Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das,
Fred Hohman, Minsuk Kahng, and Duen Horng Polo Chau. Cnn explainer:
Learning convolutional neural networks with interactive visualization. IEEE
Transactions on Visualization and Computer Graphics, 27(2):1396–1406,
2020.

[XEIM20] Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry.
Noise or signal: The role of image backgrounds in object recognition. In
International Conference on Learning Representations, 2020.

[XEQ18] Weilin Xu, David Evans, and Yanjun Qi. Feature Squeezing: Detecting
Adversarial Examples in Deep Neural Networks. Proceedings 2018 Network
and Distributed System Security Symposium, 2018.

107

https://github.com/tensorpack/

[YCFL15] Jason Yosinski, Jeff Clune, Thomas Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization. In Workshop on Deep Learnin,
International Conference on Machine Learningg, 2015.

[YHO+19] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk
Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train
strong classifiers with localizable features. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6023–6032, 2019.

[YLS+19] Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin D Cubuk, and
Justin Gilmer. A fourier perspective on model robustness in computer vision.
In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, pages 13276–13286, 2019.

[ZCDLP18] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz.
mixup: Beyond empirical risk minimization. In International Conference
on Learning Representations, 2018.

[ZHP+17] Haipeng Zeng, Hammad Haleem, Xavier Plantaz, Nan Cao, and Huamin Qu.
Cnncomparator: Comparative analytics of convolutional neural networks.
arXiv preprint arXiv:1710.05285, 2017.

[ZLK+17] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio
Torralba. Places: A 10 million image database for scene recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(6):1452–1464,
2017.

[ZZ19] Tianyuan Zhang and Zhanxing Zhu. Interpreting adversarially trained
convolutional neural networks. In International Conference on Machine
Learning, pages 7502–7511, 2019.

108

	Kurzfassung
	Abstract
	Contents
	Introduction
	Machine Learning Background
	Deep Learning Basics
	Adversarial Attacks
	Feature Visualization

	Related Work
	Robustness in Deep Learning
	Visual Analytics in Deep Learning

	Preliminary Analysis
	Initial Experiments
	Adversarial Transfer Learning
	Adversarial Transfer Learning with Inception V1
	Training with Stylized ImageNet
	Conclusion of Initial Experiments

	Visual Analytics Design of Perturber
	Overview
	Scene View
	Neuron Activation View
	Weight Editing
	Prediction View

	Implementation
	Preliminary Experiments
	Perturber

	Results
	Case Study
	Our Findings
	Quantitative Measurements for Case Studies
	Performance Measurements

	Conclusion and Future Work
	Summary
	Limitations and Future Work

	Bibliography

